首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryogenic air separation processes consume a large amount of electricity producing significant quantities of high purity gases. Rather than operating at a fixed steady state, it may be profitable to switch among different operating conditions because of variability of electrical prices and product demands. This article addresses the problem of determining the optimal daily multiperiod operating conditions for an air separation process under variable electricity pricing and uncertain product demands. The multiperiod nonlinear programming formulation includes a rigorous nonlinear model of the highly‐coupled process, and decision variables include the operating conditions within each period, as well as the transition times. Demand uncertainty is treated using the loss function included in the objective function and constraints on customer satisfaction levels. Solutions are obtained with high computational efficiency, allowing management to make informed decisions regarding operating strategies while considering the trade off between profitability and customer satisfaction levels. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
Gasoline is one of the most valuable products in an oil refinery and can account for as much as 60–70% of total profit. Optimal integrated scheduling of gasoline blending and order delivery operations can significantly increase profit by avoiding ship demurrage, improving customer satisfaction, minimizing quality give‐aways, reducing costly transitions and slop generation, exploiting low‐quality cuts, and reducing inventory costs. In this article, we first introduce a new unit‐specific event‐based continuous‐time formulation for the integrated treatment of recipes, blending, and scheduling of gasoline blending and order delivery operations. Many operational features are included such as nonidentical parallel blenders, constant blending rate, minimum blend length and amount, blender transition times, multipurpose product tanks, changeovers, and piecewise constant profiles for blend component qualities and feed rates. To address the nonconvexities arising from forcing constant blending rates during a run, we propose a hybrid global optimization approach incorporating a schedule adjustment procedure, iteratively via a mixed‐integer programming and nonlinear programming scheme, and a rigorous deterministic global optimization approach. The computational results demonstrate that our proposed formulation does improve the mixed‐integer linear programming relaxation of Li and Karimi, Ind. Eng. Chem. Res., 2011, 50, 9156–9174. All examples are solved to be 1%‐global optimality with modest computational effort. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2043–2070, 2016  相似文献   

3.
The objective of this paper is to review different optimization techniques used in chemical process synthesis. The paper first defines the process synthesis problem as a mixed-integer programming problem and then discusses the three approaches which have been used to solve it. In the discrete approach, where the operating conditions of unit operations are fixed, combined heuristic and algorithmic procedures are promising tools. In the continuous approach, the synthesis problem is a nonlinear programming problem, where the design and structural variables are optimized simultaneously. Since efficient large-scale nonlinear programming codes are now available, this approach will be a great success. A recent alternative consists in merging the two previous approaches to implement large-scale mixed-integer nonlinear programming codes. This method will have wide applications in complex chemical process synthesis.  相似文献   

4.
Crude oil selection and procurement is the most important step in the refining process and impacts the profit margin of the refinery significantly. Due to uncertain quality of the crudes, conventional deterministic modeling and optimization methods are not suitable for refinery profitability enhancement. Therefore, a novel optimization scheme for crude oil procurement integrated with refinery operations in the face of uncertainties is presented. The decision process comprises two stages and is solved using a scenario‐based stochastic programming formulation. In Stage I, the optimal crude selections and purchase amounts are determined by maximizing the expected profit across all scenarios. In Stage II, the uncertainties are realized and optimal operations for the refinery are determined according to this realization. The resulting large‐scale mixed‐integer nonlinear programming formulation incorporates integer variables for crude selection and continuous variables for refinery operations, as well as bilinear terms for pooling processes. Nonconvex generalized Benders decomposition is used to solve this problem to obtain an global optimum efficiently. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1038–1053, 2016  相似文献   

5.
Optimizing process economics in model predictive control traditionally has been done using a two-step approach in which the economic objectives are first converted to steady-state operating points, and then the dynamic regulation is designed to track these setpoints. Recent research has shown that process economics can be optimized directly in the dynamic control problem, which can take advantage of potential higher profit transients to give superior economic performance. However, in practice, solution of such nonlinear MPC dynamic control problems can be challenging due to the nonlinearity of the model and/or nonconvexity of the economic cost function. In this work we propose the use of direct methods to formulate the nonlinear control problem as a large-scale NLP, and then solve it using an interior point nonlinear solver in conjunction with automatic differentiation. Two case studies demonstrate the computational performance of this approach along with the economic performance of economic MPC formulation.  相似文献   

6.
This paper deals with the efficient computation of solutions of robust nonlinear model predictive control problems that are formulated using multi-stage stochastic programming via the generation of a scenario tree. Such a formulation makes it possible to consider explicitly the concept of recourse, which is inherent to any receding horizon approach, but it results in large-scale optimization problems. One possibility to solve these problems in an efficient manner is to decompose the large-scale optimization problem into several subproblems that are iteratively modified and repeatedly solved until a solution to the original problem is achieved. In this paper we review the most common methods used for such decomposition and apply them to solve robust nonlinear model predictive control problems in a distributed fashion. We also propose a novel method to reduce the number of iterations of the coordination algorithm needed for the decomposition methods to converge. The performance of the different approaches is evaluated in extensive simulation studies of two nonlinear case studies.  相似文献   

7.
We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for an efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations.  相似文献   

8.
Integration of production scheduling and dynamic optimization can improve the overall performance of multi-product CSTRs. However, the integration leads to a mixed-integer dynamic optimization problem, which could be challenging to solve. We propose two efficient methods based on the generalized Bender decomposition framework that take advantage of the special structures of the integrated problem. The first method is applied to a time-slot formulation. The decomposed primal problem is a set of separable dynamic optimization problems and the master problem is a mixed-integer nonlinear fractional program. The master problem is then solved to global optimality by a fractional programming algorithm, ensuring valid Benders cuts. The second decomposition method is applied to a production sequence formulation. Similar to the first method, the second method uses a fractional programming algorithm to solve the master problem. Compared with the simultaneous method, the proposed decomposition methods can reduce the computational time by over two orders of magnitudes for a polymer production process in a CSTR.  相似文献   

9.
This paper utilizes the framework of mid-term, multisite supply chain planning under demand uncertainty to safeguard against inventory depletion at the production sites and excessive shortage at the customer. A chance constraint programming approach in conjunction with a two-stage stochastic programming methodology is utilized for capturing the trade-off between customer demand satisfaction (CDS) and production costs. In the proposed model, the production decisions are made before demand realization while the supply chain decisions are delayed. The challenge associated with obtaining the second stage recourse function is resolved by first obtaining a closed-form solution of the inner optimization problem using linear programming duality followed by expectation evaluation by analytical integration. In addition, analytical expressions for the mean and standard deviation of the inventory are derived and used for setting the appropriate CDS levels in the supply chain. A three-site example supply chain is studied within the proposed framework for providing quantitative guidelines for setting customer satisfaction levels and uncovering effective inventory management options. Results indicate that significant improvement in guaranteed service levels can be obtained for a small increase in the total cost.  相似文献   

10.
Multi-scenario optimization is a convenient way to formulate and solve multi-set parameter estimation problems that arise from errors-in-variables-measured (EVM) formulations. These large-scale problems lead to nonlinear programs (NLPs) with specialized structure that can be exploited by the NLP solver in order to obtained more efficient solutions. Here we adapt the IPOPT barrier nonlinear programming algorithm to provide efficient parallel solution of multi-scenario problems. The recently developed object oriented framework, IPOPT 3.2, has been specifically designed to allow specialized linear algebra in order to exploit problem specific structure. This study discusses high-level design principles of IPOPT 3.2 and develops a parallel Schur complement decomposition approach for large-scale multi-scenario optimization problems. A large-scale case study example for the identification of an industrial low-density polyethylene (LDPE) reactor model is presented. The effectiveness of the approach is demonstrated through the solution of parameter estimation problems with over 4100 ordinary differential equations, 16,000 algebraic equations and 2100 degrees of freedom in a distributed cluster.  相似文献   

11.
A mixed‐integer nonlinear programming (MINLP) formulation to simultaneously optimize operational decisions as well as profit allocation mechanisms in supply chain optimization, namely material transfer prices and revenue share policies among the supply chain participants is proposed. The case of cellulosic bioethanol supply chains is specifically considered and the game‐theory Nash bargaining solution approach is employed to achieve fair allocation of profit among the collection facilities, biorefineries, and distribution centers. The structural advantages of certain supply chain participants can be taken into account by specifying different values of the negotiation‐power indicators in the generalized Nash‐type objective function. A solution strategy based on a logarithm transformation and a branch‐and‐refine algorithm for efficient global optimization of the resulting nonconvex MINLP problem is proposed. To demonstrate the application of the proposed framework, an illustrative example and a state‐wide county‐level case study on the optimization of a potential cellulosic bioethanol supply chain in Illinois are presented. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3211–3229, 2014  相似文献   

12.
We address the inventory planning problem in process networks under uncertainty through stochastic programming models. Inventory planning requires the formulation of multiperiod models to represent the time-varying conditions of industrial process, but multistage stochastic programming formulations are often too large to solve. We propose a policy-based approximation of the multistage stochastic model that avoids anticipativity by enforcing the same decision rule for all scenarios. The proposed formulation includes the logic that models inventory policies, and it is used to find the parameters that offer the best expected performance. We propose policies for inventory planning in process networks with arrangements of inventories in parallel and in series. We compare the inventory planning strategies obtained from the policy-based formulation and the analogous two-stage approximation of the multistage stochastic program. Sequential implementation of the planning strategies in receding horizon simulations shows the advantages of the policy-based model, despite the increase in computational complexity.  相似文献   

13.
Supply chain management has continually attracted much attention as companies are constantly looking into areas where they can cut costs and improve profit margin while maintaining customer satisfaction. Optimizing design and operation of the supply chain is vital for this purpose. Simulation models that capture the dynamics and uncertainties of the supply chain can be used to effectively conduct design and operation optimization studies. In Part 1 of this two-part paper, we proposed an integrated refinery supply chain dynamic simulator called Integrated Refinery In-Silico (IRIS). Here, we demonstrate the application of IRIS to provide decision support for optimal refinery supply chain design and operation based on a simulation–optimization framework. Three case studies are presented: identifying the optimal strategy to deal with supply disruptions, optimization of design decisions regarding additional capacity investments, and optimization of policies’ parameters. These decisions are optimized for two objectives: profit margin and customer satisfaction. The framework consists of a linkage between IRIS and a non-dominated sorting genetic algorithm, implemented in a parallel computing environment for computational efficiency. Results indicate that the proposed framework works well for supporting policy and investment decisions in the integrated refinery supply chain.  相似文献   

14.
We present a new data-driven approach for both accurate and computationally efficient approximation of vapor liquid equilibria (VLE) models. Our method is able to provide guaranteed enclosure to limit the approximation errors over the entire domain of interest, all just by sampling only at select points. The approximation relies on a mixed-integer linear programming (MILP) formulation that exploits vertex polyhedral properties of theoretically guaranteed lower and upper bounds to enclose nonlinear and nonconvex equations of state (EOS) and empirical models. Another advantage is that, unlike traditional full simulation-based data-driven approaches, we do not solve nonlinear system of equations ( f ( x ) = 0) for sampling. Instead of looking for only feasible samples, we evaluate f ( x ) over x -domain. This functional evaluation eliminates the need for computationally-demanding full-scale simulations and the associated convergence issues. We demonstrate excellent performance of the proposed MILP formulation in predicting the solubility of hydrofluorocarbon (HFC) refrigerants in ionic liquids (IL).  相似文献   

15.
Multistream heat exchangers (MSHE) enable the simultaneous exchange of heat among multiple streams, and are preferred in cryogenic processes such as air separation and LNG. Most MSHEs are complex; proprietary and involve phase changes of mixtures. Although modeling MSHE is crucial for process optimization, no such work exists to our knowledge. We present a novel approach for deriving an approximate operational (vs. design) model from historic data for an MSHE. Using a superstructure of simple 2‐stream exchangers, we propose a mixed‐integer nonlinear programming (MINLP) formulation to obtain a HE network that best represents the MSHE operation. We also develop an iterative algorithm to solve the large and nonconvex MINLP model in reasonable time, as existing commercial solvers fail to do so. Finally, we demonstrate the application of our work on an MSHE from an existing LNG plant, and successfully predict its performance over a variety of seasons and feed conditions. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
Traditionally, the methylmethacrylate (MMA) polymerization reaction process for plastic sheet production has been carried out using warming baths. However, it has been observed that the manufactured polymer tends to feature poor homogeneity characteristics measured in terms of properties like molecular weight distribution. Nonhomogeneous polymer properties should be avoided because they give rise to a product with undesired wide quality characteristics. To improve homogeneity properties force‐circulated warm air reactors have been proposed, such reactors are normally operated under isothermal air temperature conditions. However, we demonstrate that dynamic optimal warming temperature profiles lead to a polymer sheet with better homogeneity characteristics, especially when compared against simple isothermal operating policies. In this work, the dynamic optimization of a heating and polymerization reaction process for plastic sheet production in a force‐circulated warm air reactor is addressed. The optimization formulation is based on the dynamic representation of the two‐directional heating and reaction process taking place within the system, and includes kinetic equations for the bulk free radical polymerization reactions of MMA. The mathematical model is cast as a time dependent partial differential equation (PDE) system, the optimal heating profile calculation turns out to be a dynamic optimization problem embedded in a distributed parameter system. A simultaneous optimization approach is selected to solve the dynamic optimization problem. Trough full discretization of all decision variables, a nonlinear programming (NLP) model is obtained and solved by using the IPOPT optimization solver. The results are presented about the dynamic optimization for two plastic sheets of different thickness and compared them against simple operating policies. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
This article presents a novel, systematic, and robust procedure for driver and power plant selection based on mathematical programming. The discrete nature of gas turbines is considered as gas turbine drivers and gas turbine‐based power plants are selected from a group of candidates. Plant availability with considering parallel compression has also been included, which allows a more comprehensive exploitation of the trade‐offs between capital costs, operating costs, and availability. When neglecting process heating and any steam equipment, the formulation can be applied to heavily power dominated processes, such as LNG. However, a more comprehensive formulation, allowing waste heat recovery and the integration with a multilevel steam system, is also proposed to produce more thermally efficient systems. This approach proved to be flexible and robust and is the first in producing solutions ranging from no‐steam to all‐steam systems, including all‐gas turbine, all‐motor and hybrid gas turbine/motor/steam systems. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
Optimal control has guided numerous applications in chemical engineering, and exact determination of optimal profiles is essential for operation of separation and reactive processes, and operating strategies and recipe generation for batch processes. Here, a simultaneous collocation formulation based on moving finite elements is developed for the solution of a class of optimal control problems. Novel features of the algorithm include the direct location of breakpoints for control profiles and a termination criterion based on a constant Hamiltonian profile. The algorithm is stabilized and performance is significantly improved by decomposing the overall nonlinear programming (NLP) formulation into an inner problem, which solves a fixed element simultaneous collocation problem, and an outer problem, which adjusts the finite elements based on several error criteria. This bilevel formulation is aided by a NLP solver (the interior point optimizer) for both problems as well as an NLP sensitivity component, which provides derivative information from the inner problem to the outer problem. This approach is demonstrated on 11 dynamic optimization problems drawn from the optimal control and chemical engineering literature. © 2014 American Institute of Chemical Engineers AIChE J, 60: 966–979, 2014  相似文献   

19.
An approach for chance constrained programming of large-scale nonlinear dynamic systems is presented. The stochastic property of the uncertainties is explicitly considered in the problem formulation in which some input and state constraints are to be complied with predefined probability levels. The method considers a nonlinear relation between the uncertain input and the constrained variables. It also involves efficient algorithms so as to compute the probabilities and, simultaneously, the gradients through integration by collocation in finite elements. The formulation of single or joint probability limits incorporates the issue of feasibility and the contemplation of trade-off between robustness and profitability regarding the objective function values. The approach is relevant to all cases when uncertainty can be described by any kind of joint correlated multivariate distribution function. Thus, chance constrained programming is a promising technique in solving optimization problems under uncertainty in system engineering. The potential and the efficiency of the presented systematic methodology, which assumes a strict monotonic relationship between the uncertain input and the uncertain constrained output, are illustrated with application to a reactive batch distillation processes under uncertainty.  相似文献   

20.
A generalized disjunctive programming formulation is presented for the optimal design of reactive distillation columns using tray-by-tray, phase equilibrium and kinetic based models. The proposed formulation uses disjunctions for conditional trays to apply the MESH and reaction kinetics equations for only the selected trays in order to reduce the size of the nonlinear programming subproblems. Solution of the model yields the optimal feed tray locations, number of trays, reaction zones, and operating and design parameters. The disjunctive program is solved using a logic-based outer-approximation algorithm where the MILP master problem is based on the big-M formulation of disjunctions, and where a special initialization scheme is used to reduce the number of initial NLP subproblems that need to be solved. Two examples are presented that include reactive distillation for the metathesis reaction of 2-pentene and for the production of ethylene glycol. The results show that the proposed method can effectively handle these difficult nonlinear optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号