首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The gas hold-up in bubble columns containing fluidised plastic particles as solid phase was measured as a function of superficial gas velocity and solids concentration. The effects of particle size, density, wettability and concentration on gas hold-up and bubble coalescence were studied. It was found that the addition of non-wettable solids to the air/water mixture promotes bubble coalescence and, therefore, reduces the gas hold-up, while the addition of wettable solids suppresses bubble coalescence and increases the gas hold-up.  相似文献   

2.
In the heterogeneous regime, there is a strong literature evidence (discussed herein) that solids can supplant small bubbles in the dense phase and reduce the gas hold-up. This work examines the effects of the addition of 205 μm glass ballotini on the gas hold-up and kLa in a 0.286 m diameter stirred tank operated under intense conditions (P/V ≥ 5 kW m−3) close to the heterogeneous regime and above the agitator speed corresponding to the just suspended point, NJS. The tests were carried out on two systems: air–water (coalescing) and air–0.2 M sodium sulphate (salt) solution (which resists coalescence in the bubble regime). For the air–water system it was observed that the overall gas plus solids hold-up remains approximately constant until all the small gas bubbles are supplanted and then increased in direct relation to the solids volume. The kLa mirrored the gas hold-up trend and decreased with a fall in gas hold-up. In the salt solution kLa decreased in direct relationship to the solids concentration, to 40% of the no solids value at around 19% solids by volume of dispersion. Dynamic engagement and disengagement experiments established that the salt solution behaves differently than water with the small bubbles initially growing in size rather than being coalesced directly into the large bubble population.  相似文献   

3.
The gas hold-up variation and regime transition were investigated with different liquid viscosities ranging from 1.0 mPa s to 31.5 mPa s using a 0.15-m-in-diameter bubble column. In contrast to common observations, the gas hold-up graph with the superficial gas velocity could be categorized into three flow regimes: homogeneous, pseudo-homogeneous and heterogeneous flow regimes. The formation of large bubbles caused a transition from the homogeneous to the pseudo-homogenous flow regime, in which large bubbles rose vertically without oscillatory turbulence. According to the results from the dynamic gas disengagement (DGD) technique, large bubbles began to form at the transition superficial gas velocity to the pseudo-homogeneous flow regime. The transition to a heterogeneous flow regime was initiated by the turbulent movement of large bubbles. The transition superficial velocities to pseudo-homogeneous and heterogeneous flow regimes, ut1 and ut2, decreased with increasing liquid viscosity below a critical viscosity and converged to a certain value above that viscosity. However, the correlations from the literatures could not make a reasonable estimation of the transition superficial velocities because they did not consider the possible transition to a pseudo-homogeneous flow regime. Therefore, the two transition points should be predicted separately.  相似文献   

4.
《Chemical engineering science》2001,56(21-22):6359-6365
Population balance equations have been combined to a classical hydrodynamic Euler/Euler simulation to investigate the operation of a cylindrical bubble column. The MUSIG (mutiple-size-group) model implemented in the CFX 4.3 commercial software has been used. Hydrodynamic experimental variables, i.e. local axial liquid velocity and local gas hold-up, have been compared to the corresponding calculated values, showing a quite good agreement, except for the gas hold-up when the column is no more operating in the homogeneous regime. Bubble sizes have been investigated, showing that two domains of superficial gas velocities can be distinguished. In the first domain, coalescence occurs predominantly, Sauter diameter increases with the superficial gas velocity, bubble size distribution is narrow and Sauter diameter is continuously evolving along the column axis. In the second domain, break-up becomes more intensive and compensates coalescence, bubble size distribution becomes wider, since more small bubbles are formed, an equilibrium Sauter diameter appears when the superficial gas velocity increases. Furthermore an equilibrium Sauter diameter appears along the column axis, and it can be noticed that this phenomenon appears lower in the column when the gas flow rate is increased. In these two domains the characteristics of the bubbles are typical of those of the homogeneous and transition regimes.  相似文献   

5.
Secondary undesired reactions in ebullated bed resid hydroprocessors can generate an additional dispersed liquid phase, referred as mesophase, which is denser and more viscous than the continuous liquid phase and affects the operation and transport phenomena of the fluidized bed. This study investigates the effect of a dispersed immiscible liquid phase on the overall phase holdups, bubble properties, and fluidization behavior in a bubble column and ebullated bed. The experimental system consisted of biodiesel as the continuous liquid phase, glycerol as the dispersed liquid phase, 1.3 mm diameter glass beads, and nitrogen. The addition of dispersed glycerol reduced the gas holdups in the bubble column for the studied gas and liquid superficial velocities. Dynamic gas disengagement profiles reveal a rise in the large bubble population and reductions to the small and micro bubble holdups when increasing the glycerol concentration. Liquid–liquid–solid bed expansions at various liquid flowrates confirm particle agglomeration in the presence of a more viscous dispersed liquid phase. Overall phase holdups in a gas–liquid–liquid–solid ebullated bed were obtained while varying the gas and liquid flowrates as well as the glycerol concentration. A coalesced bubble flow regime was observed in the bed region without glycerol whereas the addition of glycerol resulted in the dispersed bubble flow regime due to particle clustering and a greater apparent particle size. The resulting bubble flow regime increased the bed and freeboard region gas holdups due to enhanced bubble break-up. Observations of the fluidized bed behavior following the addition of the dispersed glycerol are also discussed.  相似文献   

6.
Theoretical prediction of flow regime transition in bubble columns was studied based on the bubble size distribution by the population balance model (PBM). Models for bubble coalescence and breakup due to different mechanisms, including coalescence due to turbulent eddies, coalescence due to different bubble rise velocities, coalescence due to bubble wake entrainment, breakup due to eddy collision and breakup due to large bubble instability, were proposed. Simulation results showed that at relatively low superficial gas velocities, bubble coalescence and breakup were relatively weak and the bubble size was small and had a narrow distribution; with an increase in the superficial gas velocity, large bubbles began to form due to bubble coalescence, resulting in a much wider bubble size distribution. The regime transition was predicted to occur when the volume fraction of small bubbles sharply decreased. The predicted transition superficial gas velocity was about 4 cm/s for the air-water system, in accordance with the values obtained from experimental approaches.  相似文献   

7.
The effect of temperature on the gas hold-up and flow regimes for air—water and air—electrolyte solutions (NaCl and CuCl2) was studied in a bubble column with a sintered glass disc distributor. For the air—water system, the gas hold-up was found to decrease with increase in temperature. For the air—electrolyte solutions, increase in temperature resulted in increased gas hold-up at lower gas velocity, while at higher gas velocity the gas hold-up was found to decrease with temperature. The gas velocity ugT for transition from bubble flow to churn turbulent flow was found to decrease with increase in temperature as a result of increased coalescence. In the presence of electrolytes, ugT was found to be higher than that for water.  相似文献   

8.
In this study, the effect of ethanol addition into pure water and its concentration on bubble diameter, gas hold-up and flow regimes were investigated in an airlift reactor. Air and water with ethanol (concentration ranging from 0%–1%, v/v) were as dispersed and continuous phases, respectively. Superficial gas velocity was considered as an effective parameter. Bubble size distribution was measured by photography and picture analysis at various concentrations of ethanol and various velocities of gas. Alcohol concentration enhancement caused bubble diameter to decrease. Furthermore, the bubbles diameter in pure water was nearly 4 times higher than that of ethanol with concentration of 1% (v/v) and also was 3.4 times higher than that of ethanol with concentration of 0.25% (v/v) at the highest aeration gas velocity inlet. For ethanol solutions in lower superficial gas velocity, a homogenous flow regime was observed. This trend continued to inlet gas velocity of about 0.4 cm/s. The transition flow regime occurred after this datum although in pure water, a homogenous flow regime was observed up to a superficial gas velocity of 0.7 cm/s. The gas hold-up in dilute ethanol solutions were more than (around 2 times) that of pure water and increased with increasing concentration of ethanol in those solutions.  相似文献   

9.
Gas bubble formation from a submerged orifice under constant‐flow conditions in a quiescent high‐density liquid metal, lead–bismuth eutectic (LBE), at high Reynolds numbers was investigated numerically. The numerical simulation was carried out using a coupled level‐set and volume‐of‐fluid method governed by axisymmetric Navier–Stokes equations. The ratio of liquid density to gas density for the system of interest was about 15,261. The bubble formation regimes varied from quasi‐static to inertia‐dominated and the different bubbling regimes such as period‐1 and period‐2 with pairing and coalescence were described. The volume of the detached bubble was evaluated for various Weber numbers, We, at a given Bond number, Bo, with Reynolds number . It was found that at high values of the Weber number, the computed detached bubble volumes approached a 3/5 power law. The different bubbling regimes were identified quantitatively from the time evolution of the growing bubble volume at the orifice. It was shown that the growing volume of two consecutive bubbles in the period‐2 bubbling regime was not the same whereas it was the same for the period‐1 bubbling regime. The influence of grid resolution on the transition from period‐1 to period‐2 with pairing and coalescence bubbling regimes was investigated. It was observed that the transition is extremely sensitive to the grid size. The transition of period‐1 and period‐2 with pairing and coalescence is shown on a Weber–Bond numbers map. The critical value of Weber number signalling the transition from period‐1 to period‐2 with pairing and coalescence decreases with Bond number as , which is shown to be consistent with the scaling arguments. Furthermore, comparisons of the dynamics of bubble formation and bubble coalescence in LBE and water systems are discussed. It was found that in a high Reynolds number bubble formation regime, a difference exists in the transition from period‐1 to period‐2 with pairing and coalescence between the bubbles formed in water and the bubbles formed in LBE. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3996–4012, 2015  相似文献   

10.
Dilute, ‘dense phase 1’, and possibly a third regime-‘dense phase 2’, were observed in a vertical 0.02 m diameter pneumatic conveyor using 210 μm sand particles. The transitions were marked by the alterations in the trend of the measured average solids hold-up while varying the solids mass flowrate at constant air velocity. Hydrodynamic characteristics together with the transition criteria for the various transport modes were established. A novel regime diagram based on average gas velocities and solids mass flowrates was developed to identify the operating conditions for these regimes, as well as the limiting solids carrying capacities of the present conveyor. A probable cause of the dilute to dense phase transition is speculated upon.  相似文献   

11.
Bubble columns are operated either in the homogeneous or heterogeneous flow regime. In the homogeneous flow regime, the bubbles are nearly uniform in size and shape. In the heterogeneous flow regime, a distribution of bubble sizes exists. In this paper, a CFD model is developed to describe the hydrodynamics of bubble columns operating in either of the two flow regimes. The heterogeneous flow regime is assumed to consist of two bubble classes: “small” and “large” bubbles. For the air‐water system, appropriate drag relations are suggested for these two bubble classes. Interactions between both bubble populations and the liquid are taken into account in terms of momentum exchange, or drag‐, coefficients, which differ for the “small” and “large” bubbles. Direct interactions between the large and small bubble phases are ignored. The turbulence in the liquid phase is described using the k‐ϵ model. For a 0.1 m diameter column operating with the air‐water system, CFD simulations have been carried out for superficial gas velocities, U, in the range 0.006–0.08 m/s, spanning both regimes. These simulations reveal some of the characteristic features of homogeneous and heterogeneous flow regimes, and of regime transition.  相似文献   

12.
The aim of this paper is to investigate the squeezing-to-dripping transition for bubble formation in a microfluidic T-junction by cross-flowing rupture technique using a high-speed digital camera. Experiments were conducted in a glass microfluidic T-junction with the cross-section of the microchannel of 120 μm wide and 40 μm deep. N2 bubbles were generated in glycerol–water mixtures with several concentrations of surfactant sodium dodecyl sulfate (SDS). Three different regimes were identified for generating different kinds of bubbles: squeezing, dripping and transition regimes. Various forces exerted on the gaseous thread in different regimes were analyzed. Long slug bubbles were formed in the squeezing regime, while dispersed bubbles in the dripping regime. The transition regime formed short slug bubbles. The bubble sizes in various regimes could be correlated with several dimensionless numbers such as the ratio of gas/liquid flow rates and capillary number. The two-step model for droplets (Steegmans et al., 2009) was extended to describe the bubble formation.  相似文献   

13.
This experimental study is aimed at investigating the effect of liquid phase properties and gas distribution on bubble and hydrodynamic characteristics in bubble columns. With the various measuring techniques used, systematic measurements of bubble size, velocity and frequency and gas hold-up are possible. Bubble size distribution and shape factors which are rarely found in literature, are also available. Water–alcohol solutions are used to simulate the behaviour of industrial non-coalescing organic mixtures. The experimental results obtained with three different spargers in the coalescence inhibiting solutions are compared with data on standard coalescing air–water system. Evolutions of bubble characteristics and gas hold-up have been interpreted successfully by considering the simultaneous influence of the hydrodynamic regime of the gas–liquid flow and of the operating regime of the distributor. It has also been put into evidence that bubble frequency measurements are good tools to evaluate distributor efficiency. The influence of the distributor has been shown to be enhanced in non-coalescing media. Bubble shape and bubble size distributions are dramatically modified by addition of minute quantities of alcohol in water. Bimodal distributions can be observed even in the homogeneous regime with orifice nozzle spargers.  相似文献   

14.
An accurate and fast simulation of large-scale gas/liquid contact apparatusses, such as bubble columns, is essential for the optimization and further development of many (bio)chemical and metallurgical processes. Since it is not feasible to simulate an entire industrial-scale bubble column in full detail from first principles (direct numerical simulations), higher-level models rely on algebraic closure relations to account for the most important physical phenomena prevailing at the smallest length and time scales, while keeping computational demands low. The most important closure for describing rising bubbles in a liquid is the closure for the drag force, since it dominates the terminal rise velocity of the bubbles.Due to the very high gas loadings used in many industrial processes, bubble–bubble (or ‘swarm’) interactions need to be accounted for in the drag closure. An advanced front-tracking model was employed, which can simulate bubble swarms up to 50% gas hold-up without the problem of (numerical) coalescence. The influence of the gas hold-up for mono-disperse bubble swarms with different bubble diameters (i.e. Eötvös numbers) was quantified in a single drag correlation valid for the intermediate to high Reynolds numbers regime . Also the physical properties of the liquid phase were varied, but the simulation results revealed that the drag force coefficient was independent of the Morton number. The newly developed correlation has been implemented in a larger-scale model, and the effect of the new drag closure on the hydrodynamics in a bubble column is investigated in a separate paper (Lau et al., this issue).  相似文献   

15.
Gas hold-up and liquid phase dispersion experiments have been carried out in a 0.06 m bubble column at varying liquid and gas velocities. The results obtained show that the coefficient of liquid mixing varies with the flow regime. The isotropic turbulence theory of Baird and Rice (Chem. Eng. J., 9 (1975) 171) was used to provide dimensionally consistent correlations for the chain bubbling, bubbly and churn turbulent flow regimes. The gas hold-up was determined to increase with gas velocity in the chain bubbling and bubbly flow regimes. The results obtained from this study also show that the Froude number represents a useful criterion for mapping flow regimes in vertical bubble columns.  相似文献   

16.
In this paper we stress analogies in the hydrodynamic behaviour of gassolid fluidized beds and bubble columns. Using published experimental data, it is demonstrated that the analogous hydrodynamic-behaviour is not only qualitative but also quantitative in nature. Specifically, we show the following.(1) The gas holdup in the homogeneous regimes of bubble columns and fluidized beds can be modelled in a unified way using Vslip = υ(1 − ϵd)n−1, where Vslip refers to the slip velocity between the dispersed (bubbles or particles) and continuous phases and ϵd the dispersed phase holdup. The Richardson-Zaki exponent n decreases with increasing gas density.(2) The transition from homogeneous to heterogeneous flow regimes in gasliquid bubble columns and gassolid fluid beds is delayed by increasing system pressure. Extrapolation of the influence of increased gas density allows us to consider liquidliquid dispersions and liquidsolid fluid beds as limiting cases.(3) In the heterogeneous flow regime of operation the classic two-phase theory of fluidized beds can be applied with profit to also describe the hydrodynamics of gasliquid bubble columns provided that the “dilute” phase is identified with the fast-rising large bubbles and the “dense” phase is identified with the liquid phase containing entrained “small” bubbles. Tentative analogies can also be drawn for the interphase mass transfer processes.(4) The “dense” phase backmixing can be modelled in a unified manner.(5) The two-phase theory can be extended to describe slurry reactors.It is argued that, because of cross-fertilization of concepts and information, appreciation of analogies can be invaluable tool in scaling up.  相似文献   

17.
Slurry bubble columns are widely used in biotechnology. Therefore, the effects of solid particles on fluidization characteristics, gas hold-up and volumetric liquid-side mass transfer coefficient were measured in a slurry bubble column (i.d. 0.14 m). The density and diameter of the suspended particles were similar to those applied in biotechnology with immobilized bacteria. Based on models of turbulence and of liquid circulation induced by rising gas bubbles, equations for critical gas velocity, gas hold-up and volumetric liquid-side mass transfer coefficient were obtained by dimensional analysis.  相似文献   

18.
This study investigated the effect of alcohol on gas hold-up in two methods to add alcohol into a column. In the first method, a weighed amount of ethanol was poured into the column before the gas hold-up measurement (batch mode). In the second method, we added ethanol continuously in the form of vapor dispersed in the gas phase (continuous mode). The continuous mode was more effective in improving the gas hold-up in a heterogeneous flow regime than the batch mode. On the other hand, it had a negative effect on gas hold-up in a homogeneous flow regime. To investigate these phenomena in more detail, we measured the detachment period, bubble size distribution, and bubble break-up frequency during bubble formation in the continuous mode. When the liquid vapor was highly soluble in the continuous water phase, the detachment period and average bubble size increased and the bubble break-up frequency decreased. On the other hand, when there was little interaction between the liquid vapor and continuous water phase, the effect was negligible. This could be explained by liquid vapor diffusion from the bubble inside into the continuous water phase.  相似文献   

19.
The entrainment of fine FCC particles from a three-dimensional fluidized bed was studied. The velocities of particles leaving the bed surface and moving in the freeboard, those of bubbles rising in the dense bubbling zone, and the hold-up of solid particles in the freeboard were measured continuously by optical probes. Photographs of the freeboard were also taken continually and were compared with the information obtained by those probes.It was found that the coalescence of bubbles has an important effect on the ejection of solid particles and the relationship between the bubble eruption and the particle swarm ejection was clarified. Based on these results, a mechanistic model to account for the frequency of the ejected particle swarms was proposed.  相似文献   

20.
Single droplet experiments in a small lab scale Rotating Disk Contactor (RDC) for two different liquid–liquid systems were used to evaluate the coalescence parameters necessary for column simulations. Five different coalescence models are studied; the models parameters were obtained by an inverse solution of the population balance model using the extended fixed-pivot technique for the discretization of the droplet internal coordinate. The estimated coalescence parameters by solving the inverse problem were found dependent on the chemical test system. The Coulaloglou and Tavlarides model was found to be the best model to predict the experimental data for both test systems. These parameters were used to study the hydrodynamics and mass transfer behavior of pilot plant RDC extraction column using the simulation tool LLECMOD. This is performed for two different liquid–liquid systems as recommended by the European Federation of Chemical Engineering (EFCE) (butylacetate–acetone–water (b–a–w) and toluene–acetone–water (t–a–w)). The simulated Sauter mean droplet diameter, hold-up values and concentration profiles for organic and aqueous phase were found to be well predicted compared to the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号