首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
对溶液聚合动力学进行了理论分析。引发剂分解和对溶剂转移而产生的两种初级自由基活性不同,在体系中产生的初级自由基终止作用也不一样。由于这种作用是相互独立的,本文分别考虑了它们对聚合体系产生的影响,从而获得一系列动力学方程。用本文所得的各关系处理溶液聚合的实验数据均有效,且较合理。  相似文献   

2.
研究了以二-(3-吲哚基)-4-氯苯基-甲烷(BICBM)为新的配体与α-溴代异丁酸乙酯(Ebrib)/溴化亚铜(CuBr)组成的催化体系引发甲基丙烯酸甲酯的溶液聚合反应,考察了温度、溶剂及配体用量对反应速率以及反应“控制性”等的影响,发现在80℃Ebrib/CuBr/BICBM能较有效地控制甲基丙烯酸甲酯(MMA)的溶液ATRP反应,而且在复合溶剂(环己酮 DMF)中能更好地控制MMA的“活性”自由基聚合,所得的聚合物分子量分布较窄(1.20-1.50)。  相似文献   

3.
醋酸乙烯酯在聚合中容易发生链转移和链终止反应,所以实现醋酸乙烯酯的"活性"/可控自由基聚合是一个巨大的挑战。文中从不同的活性自由基聚合方法角度对醋酸乙烯酯的"活性"/可控自由基聚合研究进行了综述。在众多活性自由基聚合方法中以黄原酸酯、二硫代胺基甲酸酯为链转移剂的RAFT聚合和以乙酰丙酮钴络合物为调控剂的钴调控自由基聚合真正实现了它的"活性"/可控自由基聚合。  相似文献   

4.
陈艳军  罗文  孙冲 《材料导报》2011,25(9):73-76,90
在无皂乳液聚合体系中,通过使用两亲性RAFT试剂可以解决传统RAFT乳液聚合乳液稳定性差、分子量不可控和分子量分布宽等问题。从聚合特点、成核机理以及常用的两亲性RAFT试剂等方面总结了RAFT无皂乳液聚合技术的研究现状。两亲性RAFT试剂作用下的无皂乳液聚合符合RAFT活性聚合的一般特征。两亲性RAFT试剂浓度在其CMC值以上时主要通过胶束成核机理成核,在其CMC值以下则按均相成核机理成核的几率增大。常用的两亲性RAFT试剂主要是双硫酯或三硫酯。目前该方法已经成功应用于均聚物和嵌段共聚物的制备,今后可用于制备梯度共聚物等更多精细结构的聚合物。  相似文献   

5.
采用膨胀计法研究了RAFT试剂3-苄基硫基硫代羰基硫基丙酸(BSPA)在苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯的RAFT聚合中的阻滞效应,并考察了RAFT试剂用量、聚合温度、溶剂和单体种类对阻滞效应的影响。结果表明,以BSPA为RAFT试剂的聚合反应具有良好的可控性,同时BSPA在RAFT聚合中存在明显的阻滞现象,且阻滞效应与RAFT试剂的浓度、聚合温度、溶剂、单体种类密切相关。  相似文献   

6.
作为一种新兴的可控/活性聚合方法,原子转移自由基聚合(ATRP)兼具了自由基聚合与可控/活性聚合的优点。水作为一种环境友好性的溶剂,使其作为ATRP的反应介质有着强烈的吸引力。文中从均相水溶液体系以及悬浮、乳液、微乳液等非均相水溶液体系,分别介绍了近年来水介质中ATRP的研究进展,并对其发展方向进行了展望。  相似文献   

7.
可控活性自由基聚合的研究进展   总被引:6,自引:0,他引:6  
可控活性自由基聚合(CRP)是一种合成具有设计微观结构和窄分子量分布聚合物的方法,原子转移自由基聚合(ATRP)较其它CRP方法具有分子设计能力较强等优点,是应用最广泛的CRP。文中简要介绍了CRP的分类,同时以ATRP为例从单体、引发剂、催化体系等方面讨论了CRP聚合体系的发展。  相似文献   

8.
"活性"/可控自由基聚合的研究进展   总被引:2,自引:0,他引:2  
对聚合物分子的组成和结构进行精密控制是当前聚合物研究的重要领域,“活性”/可控自由基聚合可以对自由基聚合进行控制,其综合了自由基聚合和离子聚合的优点。本文介绍了实现“活性”/可控自由基聚合的5种途径,认为利用“活性”/可控自由基聚合可以合成新型确定构造的聚合物。  相似文献   

9.
以α-二硫代萘甲酸异丁腈酯(CPDN)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,CuCl2.2H2O为催化剂,2,2’-联二吡啶(bpy)为配体,对反向原子转移自由基聚合(RATRP)和可逆加成-断裂链转移自由基聚合(RAFT)的混合聚合体系进行了研究,得到了一系列末端带有双硫酯基团和-Cl的聚甲基丙烯酸甲酯均聚物。(1H-NMR)和(GPC)等测试结果表明,一锅法和两步法聚合体系均具有"活性"/可控聚合特征,其中两步法在反应初期分子量分布指数较一锅法宽,二者均存在短时间的诱导期。在混合聚合体系中,两种聚合机理共同起作用,使聚合体系具有"活性"聚合的特征。  相似文献   

10.
超支化聚合物是一种具有独特结构和性能的聚合物,应用前景广阔。用“活性”/可控聚合的路线合成超支化聚合物,能有效地避免凝胶,并控制产物的结构及其分子量分布。主要综述了通过“活性”/可控聚合制备超支化聚合物研究工作的进展。  相似文献   

11.
离子液体中的可逆-加成断裂链转移自由基聚合   总被引:1,自引:0,他引:1  
首先制备了链转移剂α-二硫代萘甲酸异丁腈酯(CPDN)和离子液体1-丁基-3-甲基咪唑-四氟硼酸盐(BMIM-BF4),然后在离子液体中进行了甲基丙烯酸甲酯(MMA)的可逆-加成断裂链转移自由基聚合(RRFT),并用FT-IR、1H-NMR和GPC等技术分别对其结构和聚合体系的"活性"特征进行了表征.  相似文献   

12.
以N-异丙基丙烯酰胺(IPA)和N,N-二甲基丙烯酰胺(DMA)为反应单体,三硫代酯DMP为链转移剂,采用可逆加成-断裂链转移自由基聚合(RAFT)方法制备了结构可控、窄分布的均聚物PIPA、PDMA和系列共聚物PIPA-co- PDMA.由于单体DMA和IPA聚合速率的不同,得到了梯度型共聚物.  相似文献   

13.
醋酸乙烯细乳液聚合动力学   总被引:1,自引:0,他引:1  
用十二烷基硫酸钠(SDS)为乳化剂,十六醇(CA)为难溶助剂,以偶氮二异丁腈(AIBN)引发醋酸乙烯酯(VAc)进行细乳液聚合。在聚合体系中预先引入了聚合物,研究了聚合物、温度、引发剂浓度对细乳液转化率的影响,得出聚合物的引入可以显著加快聚合反应速率,聚合物用量宜控制在单体用量的2%,反应的表观活化能为38.6 kJ/mol,聚合速率与引发剂浓度的0.24次方成正比。  相似文献   

14.
以可聚合表面活性剂甲基丙烯酰氧乙基十二烷基二甲基溴化铵(C12N+)为乳化剂,羧端基十二烷基三硫代酯(DMP)为可逆加成-断裂链转移(RAFT)试剂,苯乙烯为单体,在不使用助稳剂条件下采用RAFT乳液聚合成功制备了聚苯乙烯纳米颗粒并对聚合机理及反应条件进行了初步研究。结果表明,C12N+乳化剂能在反应过程中参与单体共聚,形成的预聚物能起到助稳剂作用,反应温度以70℃为宜,产物平均粒径约为36nm,分子量分布小于1.5。  相似文献   

15.
将3种双硫酯链转移剂用于二甲基丙烯酸酯的可逆加成-断裂链转移(RAFT)交联聚合体系。使用差示扫描量热仪(DSC)和凝胶渗透色谱(GPC)研究了RAFT交联聚合行为和反应动力学;用动态力学分析方法(DMA)表征了交联聚合物结构。结果表明,二甲基丙烯酸酯的RAFT交联聚合前期具有"活性"聚合特征;交联聚合动力学受链转移剂种类及用量的影响;与通常自由基交联聚合物相比,RAFT交联聚合物具有更加均匀的交联网络。  相似文献   

16.
采用SET-LRP方法进行了乙酸乙烯酯(VAc)的活性聚合。通过聚合转化率、聚合物相对平均分子量及分子量分布、聚合物核磁共振氢谱分析,研究了额外失活剂(CuCl2)、温度、溶剂等因素对聚合反应的影响。研究结果表明,失活剂CuII在使反应可控性得到增加的同时却降低了反应的转化率;反应速率不会随反应温度的升高持续增加,超过某一临界温度后反应速率反而随温度的升高而降低;与二甲基亚砜(DMSO)为溶剂相比,甲醇(CH3OH)为溶剂时,得到的聚合物的相对平均分子量较高,但分子量分布较宽。  相似文献   

17.
以S,S-二(α,α′-二甲基-α″-丙烯酸)三硫代碳酸酯(BDATC)为链转移剂,甲基丙烯酰胺(MAM)为第一单体,通过可逆加成断裂链转移聚合(RAFT)法合成出链转移剂(PMAM-CTA),以N-乙烯基吡咯烷酮(NVP)作为第二单体合成PAM-b-PNVP,再水解得到含有氨基和羧基的CO2分离固定载体膜材料N-乙烯基-γ-氨基丁酸钠-丙烯酸钠共聚物(VSA-SA)。通过FT-IR、1H-NMR、XRD和DSC对PMAM-CTA、PMAM-b-PNVP和VSA-SA进行表征,采用GPC测定分子量及分子量分布。研究发现,该聚合具有活性可控聚合的特征,聚合动力学呈一级线性关系,得到数均相对分子质量可控、相对分子质量分布(1.2~1.3)窄的聚合物。与自由基聚合产物相比,水解产物VSA-SA的结晶度减小,载体含量增加。  相似文献   

18.
RAFT法制备高分子量窄分布的PS聚合物   总被引:1,自引:0,他引:1  
以二硫代枯酯(CDB)为链转移剂,AIBN作为引发剂,用可逆加成-断裂链转移(RAFT)活性自由基聚合方法制备了高分子量窄分布的PS聚合物,其重均分子量可达到-Mw=465 000 g/mol,数均分子量达到-Mn=333 000 g/mol,分布指数D=1.40。考察了链转移剂浓度、聚合温度和聚合时间对PS聚合物的分布指数和分子量的影响,此方法制得的PS聚合物能满足工程材料的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号