首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
提取条件对竹纤维分级分离的影响   总被引:1,自引:0,他引:1  
对竹纤维组分的分级分离工艺进行了研究。以乙醇为溶剂的分级分离条件:第一级分离中NaOH 2.1%、H2O2 1.5%,第二级分离中NaOH 2.4%、H2O2 2.0%,第三级分离中NaOH 2.4%、H2O2 1.0%。NaOH对各级半纤维素、木质素和纤维素的结构影响程度依次降低,而H2O2对各组分的结构影响不大。乙醇可同时提取木质素和半纤维素,而乙酸乙酯和丙酮不能提取半纤维素;乙酸乙酯提取的木质素具有较高的得率和纯度。丙酮和乙醇对纤维素、木质素的结构影响不大,而乙酸乙酯对纤维素和木质素的结构影响较大。  相似文献   

2.
木质纤维素生物转化的关键是预处理和酶解,为了提高木质纤维素的生物转化效率,在温和条件下对稻草秸秆进行弱碱性过氧化氢处理。研究了稻草秸秆处理固液比、过氧化氢和纤维素酶添加量对酶解糖化的影响,结果表明:稻草秸秆固液比为800 g/L,过氧化氢添加量为0.125 g/g,酶解时纤维素酶浓度25 FPU/g底物为较好,红外分析表明稻草秸秆处理后,秸秆纤维素的结晶度和木质素含量都有所下降,促进了生物转化后续过程中的酶解糖化。  相似文献   

3.
以稻草秸秆为原料经碱性臭氧预处理后进行酶水解,研究了处理前后稻草秸秆半纤维素、纤维素、木质素含量的变化,通过测定酶水解还原糖含量来判断预处理的效果。结果表明,碱性臭氧预处理与碱预处理相比,在稻草秸秆木质素含量与降解上没有什么差异,但酶水解糖化效果更优。经O3/2%NaOH预处理过的稻草秸秆,在pH值5.0、酶用量31.2mg.(g底物)-1、45℃条件下酶水解120h时,还原糖含量达到了902mg.(g稻草秸秆)-1,糖化率达到了92.57%。  相似文献   

4.
采用超声波与稀碱液联合预处理稻草秸秆,借助红外表征、X衍射和扫描电镜成像分析,对预处理稻草的结构组成以及酶解糖化进行了研究。结果表明:在超声场下的稀碱液能破坏稻草的秸秆结构,使更多的木质素被剥离,并由此提高秸秆的糖化率;与2%碱液处理相比,超声协同下的1%NaOH用量减少50%,纤维素损耗降低4%,稻草秸秆的糖化率达到27%(增加了7%),最终超声协同2%NaOH处理过的秸秆糖化率最高达30%。  相似文献   

5.
采用碱性过氧化氢对小麦秸秆进行预处理以提高其酶解效率。分别研究了过氧化氢浓度、预处理温度、预处理时间对麦秆化学成分及酶解产糖效率的影响,确定出最佳预处理条件为:Na OH质量分数为2.0%碱性环境,H_2O_2质量分数为2.0%,30℃处理24小时。经过处理的样品中纤维素含量为50.43%,纤维素保留率为89.52%,木质素脱除率为48.66%,半纤维素脱除率为41.81%,经预处理的样品酶解率达94.18%。此外,对预处理后的样品进行了SEM和FT-IR表征,分析预处理对原料形貌及官能团变化的影响。  相似文献   

6.
探讨了添加1‰吐温-80非离子表面活性剂和不同浓度碱预处理对稻草秸秆木质素及纤维素的影响,并对预处理前后的稻草进行了X射线衍射光谱(XRD)分析,从结晶度的变化综合分析了预处理对纤维素酶解的影响。实验结果表明:在30℃下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至6.5%(较未处理稻草下降了41.9%),灰分值仅占6.9%,具有较好的粗饲料价值;在121℃(0.1 MPa)下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至2.8%(较未处理稻草下降了74.5%),酶解还原糖达到393.9 mg/g,纤维素糖化率为59.3%(较未处理稻草提高了2.4倍)。XRD分析显示,在较温和的条件下,低浓度碱预处理稻草秸秆,对纤维素结晶区带来的影响相对于无定形区弱,不足以引起纤维素结晶度的降低。  相似文献   

7.
张强  陈诗阳 《化工进展》2022,41(1):161-165
为了解氧气(O2)在玉米秸秆湿热预处理中的作用,优化玉米秸秆酒精生产工艺,本文采用三种不同湿热预处理条件处理玉米秸秆,即条件1(195℃,15min)、条件2(195℃,15min,12bar O2)和条件3(195℃,15min,12bar O2,2g/L Na2CO3),并利用酿酒酵母对预处理后的玉米秸秆同步糖化发酵酒精工艺(SSF)进行了研究。实验结果表明:经过预处理,玉米秸秆分为固体滤饼与水解液两部分,其中绝大部分纤维素以固体形式保留在滤饼中,而半纤维素和木质素由于不稳定则发生了部分水解或降解。三种预处理条件下纤维素总体收率分别为91.2%、94.6%和95.9%,半纤维素总体收率分别为74.5%、50.3%和68.2%,固体滤饼中木质素质量分数分别为25.2%、17.5%和13.7%,纤维素酶解葡萄糖率分别为64.8%、65.8%和67.6%。表明氧气对纤维素收率影响不大,能够促进半纤维素的溶出。氧气主要与木质素发生反应,尤其与碱性物质碳酸钠(Na2CO3)结合,能够促进木质素降解,从而获得了较高的纤维素收率和纤维素酶解葡萄糖率。因此在底物质量分数8%,经过酿酒酵母142h发酵,经条件3处理的玉米秸秆获得的酒精浓度最高,最终酒精浓度达到25.0g/L,并且整个发酵过程没有明显的抑制作用产生。  相似文献   

8.
氨水浸泡稻草秸秆对纤维素酶解产糖的影响   总被引:1,自引:0,他引:1  
为了有效提高木质纤维素酶解糖化率,以稻草秸秆为研究对象,采用氨水预处理实验,考察稻草秸秆粉粒度、氨水质量分数、预处理时间、预处理温度、液固比对稻草秸秆酶解糖化的影响。结果表明:稻草秸秆经60目过筛后用14%氨水按液固比9∶1在50℃处理35h,糖化率达61.42%。  相似文献   

9.
《化学工程》2021,49(9)
为提高生物质纤维素酶解性能,采用乙二醇耦合对甲基苯磺酸(EG-PTSA)法对玉米秸秆进行预处理,考察了温度、对甲基苯磺酸(PTSA)质量分数、反应时间对酶解性能的影响,并通过扫描电镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱仪(FTIR)对预处理前后的样品进行表征分析。结果表明:在对甲基苯磺酸质量分数2.0%、100℃、60 min下,木质素脱除率为83.2%,纤维素保留率为83.5%;同时,酶解纤维素的葡聚糖产率从23.8%提高至71.4%(5 FPU/g),比原始玉米秸秆的酶解效率(23.8%)高出近3倍。SEM、XRD和FTIR分析表明,玉米秸秆经EG-PTSA预处理后,木质素、半纤维素大量脱除打破了秸秆纤维素致密结构,增加了纤维素酶的可及性,提高了酶解性能,是一种简单、高效且有前景的预处理方法。  相似文献   

10.
对玉米秸秆进行氢氧化钠/蒽醌(NaOH/AQ)去木质化预处理,考察了预处理温度、时间和NaOH用量对玉米秸秆脱木质素程度的影响,并探讨了脱木质素程度对提高预处理后物料酶解性能的影响。L9(34)正交试验得出较适宜预处理工艺条件为:温度160℃,时间60 min,NaOH用量(以绝干原料质量计)2.8%;其他条件为AQ用量0.05%,固液比1:5(g:mL),此时木质素脱除率为75%,酶解后聚糖转化率达到73.79%。随着物料脱木质素程度的提高,其酶解效率相应增加;当木质素脱除率达到一定程度后,预处理后的聚糖转化率达到最大值,继续提高木质素脱除率,聚糖转化率反而降低。响应面优化的酶水解工艺条件为纤维素酶用量30 FPU/g,β-葡萄糖苷酶10 IU/g,反应时间72 h,温度50℃,底物质量分数2.5%,此时还原糖得率为85.62%。对酶解液进行HPLC分析,酶解液中的葡萄糖质量浓度为14.83 g/L,木糖质量浓度为4.83 g/L。XRD分析显示,预处理前后纤维素的晶型没有变化,而结晶度由31.40%提高至46.91%,表明物料中木质素和半纤维素发生了不同程度的溶出。  相似文献   

11.
碱预处理糠醛渣性质及其纤维素酶解研究   总被引:4,自引:0,他引:4  
以糠醛渣为原料进行碱法预处理,对比了处理前后的样品成分、结晶度、表面特性、红外谱图的变化以及对纤维素酶解的影响。研究结果表明:经NaOH处理样品,木质素脱除量随着温度升高而增加,120 ℃ 处理后的样品木质素脱除了 10.22 %,而碱性过氧化氢处理样品木质素脱除率达到 12.6 %。NaOH预处理后的样品酶解糖化率随处理温度的升高而降低。每克纤维素加入纤维素酶 12 FPU、纤维二糖酶 15 IU,120 ℃ 经NaOH预处理样品,酶解 72 h 后糖化率为38.6%,比原料糠醛渣低21.0个百分点,而经 60 ℃,6 h 碱性过氧化氢处理后的样品,酶解 72 h 糖化率可达到 86.6 %,比原料糠醛渣高27.0个百分点。NaOH预处理后样品红外谱图检测,证明生成了新的醚键。碱法预处理后的样品结晶度要比未处理的样品的稍高,且表面更加光滑。  相似文献   

12.
表面活性剂耦合离子液体对稻秆酶解糖化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
酶解糖化是木质纤维素材料制备生物质乙醇的关键环节,因此提高稻秆等木质纤维素材料的酶解糖化效率具有重要意义。以稻秆为原料,采用表面活性剂耦合离子液体为预处理方法,考察预处理温度、时间、表面活性剂的添加比例对稻秆酶解的影响。结果表明,预处理温度为110℃、时间为60 min、表面活性剂添加比例为1%,稻秆的酶解效果最佳,与单独离子液体处理的稻秆相比,纤维转化率可提高8%~15%。同时分别通过稻秆成分分析、FTIR、XRD、SEM等对预处理前后的稻秆结构进行表征,证实预处理后酶解效率提高的合理性。  相似文献   

13.
自水解预处理对稻草化学成分及酶解性能的影响   总被引:4,自引:3,他引:1  
研究了自水解处理对稻草秸秆主要化学成分及酶解糖化效率的影响。结果显示:在100~160℃下对稻草进行自水解预处理,酸溶木质素的脱除程度随着自水解温度的升高而增大,而Klason木质素含量几乎没有变化,几乎全部SiO2仍然保留在预处理后草片中;稻草高聚糖的降解程度随着自水解温度的升高而增加,但由于自水解液酸性较弱,大量高聚糖仍保留在草片中;自水解预处理有利于促进稻草的酶解糖化,随着自水解预处理温度的升高和酶用量的增大,酶解液中各种聚糖得率均有不同程度的提高,但自水解温度的影响显得更为重要;经160℃自水解预处理的稻草在40 FPU/g混合酶用量下,葡聚糖和木聚糖的总转化率约为68%和45%,总糖转化率近60%。  相似文献   

14.
亚硫酸钠预处理提高稻草酶水解糖化效率的研究   总被引:1,自引:0,他引:1  
研究了亚硫酸钠预处理对稻草化学组分变化及酶水解性能的影响。结果表明,提高温度或增加Na2SO3用量可以脱除更多的木质素和半纤维素,酶水解效率也相应提高,但木质素脱除率达到50%以后,继续增强预处理条件,对酶水解糖得率无显著的促进作用。相比而言,加大Na2SO3用量更有利于使木质素溶出,提高温度更有利于使高聚糖溶出,加大Na2SO3用量比提高温度对酶水解效率的提高影响更显著。通过实验得到亚硫酸钠预处理稻草的最优条件,在温度为140℃,Na2SO3用量为16%,纤维素酶用量为20 FPU/g(对纤维素)时,总糖转化率达到最大,为74.9%,此时的总糖得率为43.5%。  相似文献   

15.
麦草是一种具有很大潜力的制取生物乙醇的可再生木质纤维素原料。文章探讨了碳酸钠预处理预浸时间、保温时间、碳酸钠用量对麦草化学成分及酶水解效率的影响。结果表明,延长碳酸钠预处理保温时间对木质素脱除无明显影响,但浆料得率和酶水解总糖转化率有所下降;合理的预浸时间为30 min,继续延长预浸时间对预处理浆料酶水解总糖转化率无促进作用;增加预处理Na2CO3用量有助于促进木质素的脱除,大部分碳水化合物保留在浆料中。在8% Na2CO3(Na2O计)用量下,麦草于80℃预浸30 min后升温至130℃,不保温所得到的浆料在纤维素酶用量为20 FPU/g(对纤维素)时,其总糖转化率为60%。  相似文献   

16.
研究了醋酸预处理对稻草主要化学成分及酶水解糖化效率的影响。在160℃下以不同的醋酸用量(0~4%)对稻草进行处理,预处理后稻草的Klason木质素含量基本保持不变,约60%的酸溶木质素被脱除;灰分含量(质量分数)约下降30%,灰分中SiO2则几乎全部保留在预处理浆料中。预处理醋酸用量的增加对酸溶木质素和灰分含量的变化均无显著影响。预处理后高聚糖的降解程度随醋酸用量的增加而上升,其中半纤维素的降解程度尤为显著,阿拉伯聚糖、半乳聚糖大量溶出。对经醋酸预处理稻草的酶水解研究表明,预处理中醋酸用量的增加无助于酶水解液中还原糖得率的提高。稻草于160℃下经不添加醋酸的自水解预处理后,其酶解还原糖得率均高于经醋酸预处理的稻草,当纤维素酶用量为40 FPU/g(对底物)时,稻草中高聚糖的酶水解转化效率最高,葡聚糖、木聚糖的转化率分别为67.8%和45.3%,总糖转化率为58.8%。  相似文献   

17.
以水稻秸秆为原料.在常温常压条件下分别用乙酸、过氧化氢、乙酸-过氧化氢(PPA)、氢氧化钠-PAA进行预处理,然后加入纤维素酶和酵母进行异步发酵产乙醇。结果表明,酸碱结合(氢氧化钠~PPA)处理后的固体得率显著低于乙酸或过氧化氢的单独处理,固体得率和纤维素水解后产生的葡萄糖浓度呈负相关;氢氧化钠-PAA处理能有效去除水稻秸秆中的木质素.大幅提高纤维素水解率和乙醇转化率;用10%氢氧化钠-PAA室温浸泡处理水稻秸秆48h与用5%氢氧化钠-PAA90℃处理水稻秸秆1.5h具有同样的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号