共查询到16条相似文献,搜索用时 46 毫秒
1.
提出一种基于改进人工鱼群算法优化支持向量机(SVM)的变压器故障诊断方法。首先对基本人工鱼群算法进行改进,引入柯西变异优化觅食行为,并在算法的迭代过程中利用鱼群搜索到的信息和[t]分布变异的特点,对劣质个体鱼进行消亡与重生,提高鱼群算法的寻优效率和求解精度。然后,利用改进的人工鱼群算法优化SVM的核函数参数及惩罚系数,使SVM分类器获得最佳的分类精度。最后采用决策导向无环图(DDAG)方法建立变压器故障诊断SVM多分类决策模型。通过仿真实验将提出的方法与网格搜索法Grid-SVM、GA-SVM、PSO-SVM比较,所建模型具有更高的诊断正确率。 相似文献
2.
一种人工鱼算法与捕鱼算法相结合的优化方法 总被引:1,自引:0,他引:1
在分析人工鱼群算法和捕鱼算法存在不足的基础上,提出了一种人工鱼群算法(AFSA)与采用捕鱼策略的优化算法(FSOA)相结合的混合算法。该算法在优化初期使用AFSA算法搜索局部最优域,而在优化后期则使用FSOA算法在优化前期所初步确定的局部最优域中搜索最优解。实验计算结果表明,该算法具有优化精度高、收敛速度快的特点。 相似文献
3.
针对FSOA中渔夫搜索效率低且易陷入局部极值等不足,提出了一种采用随机探测的改进FSOA算法。该算法采用随机选点与旋转定点相结合的选择探测点方法,并对渔夫的收缩搜索操作做了一定的限制,以进一步提高渔夫的搜索效率。从数值实验仿真结果上看,该改进方法是有效的和可行的。 相似文献
4.
在分析FSOA方法存在不足的基础上,提出了改进的FSOA。该优化方法要求渔夫采用随机探测策略,渔夫的搜索方向受其当前前进方向的限制;位于当前最优位置的渔夫采用收缩搜索策略,其余的渔夫采用移动搜索策略。四个典型函数的优化实验结果表明,该方法对于解决复杂函数的优化问题是有效的和可行的。 相似文献
5.
为了快速有效地识别火灾火焰图像,提出了一种基于改进人工鱼群算法(IAFSA)的孪生支持向量机(TWSVM)的火焰识别方法.该方法根据RGB-YCbCr混合颜色空间模型中火焰像素的分布特点对火焰图像进行分割,并在此基础上提取火焰图像的相关特征;采用人工鱼群算法(AFSA)搜索TWSVM最优惩罚参数与核参数,并在AFSA算... 相似文献
6.
7.
刘双印 《计算机工程与设计》2009,30(20)
针对BP神经网络收敛速度慢、易陷入局部极小的缺点,提出将改进的人工鱼群算法与BP算法相结合的混合算法训练人工神经网络,建立了相应的优化训练模型及训练过程.通过基于生物免疫机制改进的人工鱼群算法优化训练多层前向神经网络,使神经网络对训练初值和参数要求不高,扩大了权值的搜索空间,提高了收敛速度和学习精度,有效地协调全局和局部搜索能力.仿真结果表明,该算法性能优于其它算法,具有均方误差值小,收敛速度快和计算精度高等特点,是一种更有效的神经网络训练算法. 相似文献
8.
在分析粒子群优化算法(PSO)和采用捕鱼策略的优化方法(FSOA)存在不足的基础上,提出一种将PSO融入捕鱼策略中的优化算法。该算法要求渔夫在打渔活动中采用灵活机动的多点随机抛投鱼网策略。将该优化算法用于解决三个典型的带约束的函数优化问题,优化实验仿真结果表明,该方法具有收敛速度快、优化精度高、稳定性好的特点,具有较好的全局寻优能力。 相似文献
9.
10.
针对基本人工鱼群算法中人工鱼漫无目的随机游动或在非全局极值点的大量聚集和(1+1)-ES的不足,充分利用公告板中的历史最优鱼和(1+1)-ES的优点,提出了一种新的混合优化算法。通过测试函数和应用实例测试验证,结果表明新算法显著提高了基本AFSA和(1+1)-ES的求解质量和运行效率,该算法是可行的和有效的。 相似文献
11.
传统的可伸缩性聚类算法可扩展性不强、处理孤立点的能力较弱。人工鱼群算法是一种基于动物行为的寻求全局最优算法,将人工鱼群算法应用于Web用户聚类,模仿鱼群的觅食、聚群、追尾和随机行为来构造人工鱼,通过鱼群每个个体的局部最优,来找到全局最优值,从而对Web访问用户进行合理聚类。实际运行结果验证了算法的有效性。 相似文献
12.
考虑到智能算法对各类饲料配方优化模型的广泛适用性,首次将人工鱼群算法(AFSA)应用于饲料配方优化。为满足饲料配方优化对收敛精度的要求,采用了一种基于共生系统的人工鱼群算法运行框架,显著提高了原算法的收敛精度与速度。在优化过程中,人工鱼在解空间的位置直接以饲料配比进行编码,采取基于罚函数的评价函数计算其适应度;人工鱼以预定的行为策略执行各行为算子对解空间进行搜索。最后三个实际算例验证了所提算法的有效性。验证结果表明,所提算法设计出的饲料配比方案的吨成本显著降低,各项营养达标,提出算法的优化性能明显优于其他已有算法。 相似文献
13.
14.
人工鱼群基本算法在求解多峰函数最优值时,存在计算精度有限,易陷入局部最优,鲁棒性较差以及收敛速率较慢和搜索效率较低的缺点,而随机移动算子的随机性是造成这些缺点的重要因素。通过引入粒子群算法思想和自适应扰动的思想对随机移动算子进行改进,进而提出了基于粒子群算法的人工鱼群算法(PSO-AFSA)和包含自适应扰动项的改进人工鱼群算法(ADI-AFSA),并证明了两种改进算法的收敛性。利用公认测试函数集进行仿真实验,结果表明两种改进算法与人工鱼群基本算法及其传统改进算法相比,提高了计算精度、收敛速率、搜索效率并且具有更好的鲁棒性。 相似文献
15.
通过对遗传算法(GA)和人工鱼群算法(AFSA)的研究,结合太阳电池I-V曲线的数学模型,提出了一种遗传算法与人工鱼群算法相互融合的优化算法(GA-AFSA)。GA-AFSA保持了遗传算法的全局寻优的优点,克服了人工鱼群漫无目的随机游动和遗传算法收敛慢的缺点,并且通过人工鱼群算法的计算提高了收敛速度。利用了太阳电池实测数据进行I-V曲线拟合及太阳电池的光生电流、二极管品质因数、串联电阻、反向饱和电流、并联电阻等5个重要参数的最优求解。将GA-AFSA与已有的算法进行了比较,仿真实验表明GA-AFSA精度高,收敛速度快。 相似文献
16.
基于原始人工鱼群算法,进行觅食、追尾、聚群行为的改进,以及可视域的自适应调整,提出了改进的人工鱼群算法。算法采用不同的参数值进行匹配,以优化函数值为例进行仿真实验。实验分析研究了主要参数对该算法优化性能的影响,并得出了合理的参数取值,以解决人工鱼群算法寻优精度低、运行速度慢的问题;实验还通过不同函数验证了改进的人工鱼算法具有更高的求解精度、更快的执行速度、更高的稳定性等优点。 相似文献