共查询到20条相似文献,搜索用时 15 毫秒
1.
Global identification of snowcover using SSM/I measurements 总被引:11,自引:0,他引:11
Visible satellite sensors have monitored snowcover throughout the Northern Hemisphere for almost thirty years. These sensors can detect snowcover during daylight, cloud-free conditions. The operational procedure developed by NOAA/NESDIS requires an analyst to manually view the images in order to subjectively distinguish between clouds and snowcover. Because this procedure is manually intensive, it is only performed weekly. Since microwave sensors see through nonprecipitating clouds, snowcover can be determined objectively without the intervention of an analyst. Furthermore, microwave sensors can provide daily analysis of snowcover in real-time, which is essential for operational forecast models and regional hydrologic monitoring. Snowcover measurements are obtained from the Special Sensor Microwave Imager (SSM/I), flown aboard the DMSP satellites. A decision tree, containing various filters, is used to separate the scattering signature of snowcover from other scattering signatures. Problem areas are discussed and when possible, a filter is developed to eliminate biases. The finalized decision tree is an objective algorithm to monitor the global distribution of snowcover. Comparisons are made between the SSM/I snowcover product and the NOAA/NESDIS subjectively analyzed weekly product 相似文献
2.
Interpretation of SSM/I measurements over Greenland 总被引:2,自引:0,他引:2
Multispectral brightness temperature (TB) measurements over Greenland are obtained from the Special Sensor Microwave Imager (SSM/I), which are flown aboard the DMSP satellites. This paper examines the different spectral characteristics over Greenland throughout the year. Although snow covers the vast majority of Greenland, the southern regions rarely exhibit the spectral characteristics associated with snowcover (i.e., TB decreases at higher frequencies). In fact, the SSM/I polarization and frequency measurements over southern Greenland are more indicative of water than a snow-covered surface (i.e., TB increases at higher frequencies). A simplified physical model is developed to help explain the anomalous measurements over southern Greenland. Model results indicate that high frequency radiation is mainly scattered by snow grains residing above the subsurface ice layers, whereas low frequency radiation is scattered throughout a much greater depth. Since low frequencies are scattered throughout a greater volume, they are depressed relative to high frequencies, and the typical snowcover signature is absent 相似文献
3.
Metamorphic signature of snow revealed in SSM/I measurements 总被引:2,自引:0,他引:2
Brightness temperatures (19, 22, 37, 85 GHz) measured by the special sensor microwave/imager (SSM/I) are analyzed using data from the snow monitoring network within the former Soviet Union during the 1987-1988 winter period. It is shown that in the beginning of winter, the SSM/I measurements display the classical snow scattering signature, i.e., the brightness temperatures decrease with increasing depth, and the largest decrease occurs at the highest frequency. Dramatic deviations from this pattern are observed in the middle of winter, where the brightness temperature approaches a minimum and then begins to increase despite the fact that the snow depth remains constant or continues to grow. The two-stream radiative transfer model is combined with results from dense media theory to help explain the phenomenon. Model results suggest that the increase in brightness temperature is due to a decrease of the single scattering albedo as the snowpack ages. This decrease of the albedo is related to changes in the snow crystalline structure due to metamorphism. Consequences for the interpretation of satellite measurements and development of algorithms for deriving snow water equivalent are discussed 相似文献
4.
Goodberlet M.A. Swift C.T. Wilkerson J.C. 《Geoscience and Remote Sensing, IEEE Transactions on》1990,28(5):823-828
An operational wind speed algorithm was developed. This algorithm is based on the D-matrix approach, which seeks a linear relationship between measured SSM/I brightness temperatures and environmental parameters. D-matrix performance in the low-to-medium wind speed range was validated by comparing algorithm-derived wind speeds with near-simultaneous and colocated measurements made by the anemometers of offshore ocean buoys. Results indicate that for approximately 85% of the time, the D-matrix-retrieved winds will have an accuracy better than the Defense Meteorological Space Program goal of ±2 m/s. For the remaining 15% of the time, the scene will be rain-flagged and retrieval accuracies will be worse than ±2 m/s 相似文献
5.
Satellite radiometric measurements at 150, 183.3/spl plusmn/3, and 183.3/spl plusmn/7 GHz have previously been used to retrieve integrated water vapor <1 g/cm/sup 2/ over Antarctica. The effects of the frequency dependence of surface emissivity and the variation of surface temperature on the retrieval, which have not been closely examined in the studies, are analyzed. Using four days of near-concurrent airborne and satellite radiometric measurements, it is shown that the previously derived retrieval algorithm could overestimate or underestimate integrated water vapor by up to 0.1 g/cm/sup 2/, depending on whether the surface emissivity increases or decreases with frequency. The average of the absolute value of the bias for each flight case studied is /spl les/0.04g/cm/sup 2/. Additionally, surface skin temperature is shown to vary substantially over a range from 240-270 K during these four days of measurements; the corresponding effect on the retrieval of integrated water vapor is comparable to that due to frequency dependence on surface emissivity. The quantitative correction needed for this effect is dependent upon the magnitude of integrated water vapor. At high values of integrated water vapor of 0.6-0.8 g/cm/sup 2/, the corrections are as large as 0.1 g/cm/sup 2/ for changes of surface temperature of /spl plusmn/10 K. A simple procedure is implemented to correct for this error, which significantly improves the retrieval. Correction for the frequency dependence of surface emissivity is nontrivial when using currently available satellite measurements; in order to properly correct this effect, an additional channel of measurements, e.g., at 220 GHz, is required. 相似文献
6.
Spatial resolution enhancement of SSM/I data 总被引:4,自引:0,他引:4
One of the limitations in using Special Sensor Microwave/Imager (SSM/I) data for land and vegetation studies is the relatively low-spatial resolution. To ameliorate this limitation, resolution-enhancement algorithms can be applied to the data. In this paper, the Backus-Gilbert inversion (BGI) technique and the scatterometer image-reconstruction (SIR) algorithm are investigated as possible methods for creating enhanced resolution images from SSM/I data. The two algorithms are compared via both the simulation and the actual SSM/I data. The algorithms offer similar resolution enhancement, though SIR requires significantly less computation. Sample results over two land regions of South America are presented 相似文献
7.
Fleming H.E. Grody N.C. Kratz E.J. 《Geoscience and Remote Sensing, IEEE Transactions on》1991,29(4):571-583
The relationship between atmospheric temperatures and the brightness temperatures measured by the Special Sensor Microwave/Temperature (SSM/T) radiometer is addressed. Physical algorithms for retrieving temperature profiles explicitly employ the physics of radiative transfer. Consequently, it is necessary to do the forward problem accurately before attempting the retrieval problem. The various problems that arise in doing forward calculations over oceans are discussed. These problems include determining when the measurements are cloud contaminated, the amount of liquid water in the fields of view, the surface emissivity under both clear and cloudy conditions, the corrections for liquid water contamination of the measurements, the adjustments for deficiencies in the radiative transfer model, and the compensation for measurement discrepancies by using shrinkage estimation. These procedures are developed for SSM/T data, and their validity is checked by comparing the forward calculations with the corresponding satellite measurements. Application of the procedures to an independent data set confirms their veracity 相似文献
8.
Sethmann R. Burns B.A. Heygster G.C. 《Geoscience and Remote Sensing, IEEE Transactions on》1994,32(6):1144-1151
A space variant image restoration algorithm has been developed with the aim of improving the spatial resolution of SSM/I (Special Sensor Microwave/Imager) passive microwave imagery. Due to the conical scanning of the instrument the relative geometry of the data samples changes over the scan. This change is accounted for by using a space variant point-spread-function in the restoration algorithm. Application of this algorithm to a scene from the Weddell Sea results in an image with enhanced ice edge and coast definition. As a result ice concentration estimates near the edge agree more closely with higher resolution (optical) data from AVHRR 相似文献
9.
Determination of oceanic total precipitable water from the SSM/I 总被引:3,自引:0,他引:3
Alishouse J.C. Snyder S.A. Vongsathorn J. Ferraro R.R. 《Geoscience and Remote Sensing, IEEE Transactions on》1990,28(5):811-816
Results are presented of calibration/validation studies showing the ability of the Special Sensor Microwave/Imager (SSM/I) to measure total precipitable water in the atmosphere over the ocean. Comparisons between radiosondes and the SSM/I are presented for three different algorithms. The results show the possibility of a distinct improvement in the retrieval of total precipitable water over the ocean. The global, nonlinear algorithm is more sensitive to cloud liquid water content, rain, and sea ice. The additional sensitivity is due to the screening of rain and sea ice from the dependent data and the squared term in the retrieval algorithm. Thus, it will be very important to have good screening procedures for identifying these conditions. The linear algorithm overestimates in the mid-range and underestimates at large values of total precipitable water. The explanation for this effect is probably related to the selection of the center of the water vapor line as the operating frequency of the SSM/I water vapor channel. The line center is most likely to exhibit a saturation effect at large water vapor amounts, and pressure and temperature effects can also be important, depending on the distribution of water vapor in the atmosphere 相似文献
10.
Determination of cloud liquid water content using the SSM/I 总被引:2,自引:0,他引:2
Alishouse J.C. Snider J.B. Westwater E.R. Swift C.T. Ruf C.S. Snyder S.A. Vongsathorn J. Ferraro R.R. 《Geoscience and Remote Sensing, IEEE Transactions on》1990,28(5):817-822
As part of a calibration/validation effort for the Special Sensor Microwave/Imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85 V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean 相似文献
11.
Ocean surface wind speed and direction retrievals from the SSM/I 总被引:1,自引:0,他引:1
A semiempirical model is developed that retrieves ocean surface wind direction information in addition to improved wind speeds from Special Sensor Microwave/Imager (SSM/I) measurements. Radiative transfer and neural network techniques were combined in the authors' approach. The model was trained and tested using clear sky cases, but atmospheric transmittance is retrieved so that retrieval in other than clear sky conditions is possible. With two SSM/I instruments currently providing operational ocean surface wind speed retrievals, the addition of wind direction information and improved wind speed retrievals will enhance the impact of this data in weather prediction models and marine weather forecasting 相似文献
12.
Contact potential measurements by the Kelvin method were performed in vacuum on silicon wafers whose thermal oxide film was etched into the shape of a wedge. A given position along the oxide corresponded directly to a given depth and by scanning a reference electrode stripe across the wafer, information about the distribution of the oxide charge through the thickness was obtained. It was found that the oxide charge was positive and concentrated within a few hundred angstroms of the SiSiO2 interface. 相似文献
13.
A method for enhancing the 19-, 22-, and 37-GHz measurements of the SSM/I (Special Sensor Microwave/Imager) to the spatial resolution and sampling density of the high-resolution 85-GHz channel is presented. An objective technique for specifying the tuning parameter, which balances the tradeoff between resolution and noise, is developed in terms of maximizing cross-channel correlations. Various validation procedures are performed to demonstrate the effectiveness of the method, which, it is hoped, will provide researchers with a valuable tool in multispectral applications of satellite radiometer data 相似文献
14.
Yunhe Zhao Liu A.K. Long D.G. 《Geoscience and Remote Sensing, IEEE Transactions on》2002,40(6):1241-1246
Arctic sea ice motion for the period from October 1999 to March 2000 derived from QuikSCAT and ocean buoy observations.Special Sensor Microwave/Imager (SSM/I) data using the wavelet analysis method agrees well with ocean buoy observations. Results from QuikSCAT and SSM/I are compatible when compared with buoy observations and complement each other. Sea ice drift merged from daily results from QuikSCAT, SSM/I, and buoy data gives more complete coverage of sea ice motion. Based on observations of six months of sea ice motion maps, the sea ice motion maps in the Arctic derived from QuikSCAT data appear to have smoother (less noisy) patterns than those from NSCAT, especially in boundary areas, possibly due to constant radar scanning incidence angle. For late summer, QuikSCAT data can provide good sea ice motion information in the Arctic as early as the beginning of September. For early summer, QuikSCAT can provide at least partial sea ice motion information until mid-June. In the Antarctic, a case study shows that sea ice motion derived from QuikSCAT data is consistent with pressure field contours. 相似文献
15.
Microwave remote sensing detection of snow melt and ablation generally focuses on the detection of liquid moisture in the snow-pack. For ablation estimation, it is important to determine if wet snow is in the process of melting or freezing. The different stages of the melt cycle are observed in the diurnal variation of T/sub b/ measurements from the Special Sensor Microwave Imager (SSM/I) over Greenland. SSM/I channel ratios exhibit patterns indicating that they are sensitive to melt and freeze stages of the daily melt cycle. The horizontal to vertical polarization ratio is sensitive to surface wetness associated with melting. The 19-37-GHz frequency ratio is sensitive to a frozen surface layer over wet snow which is associated with the freeze stage of the melt cycle. These observations are supported by conceptual models presented here and in in situ measurements from other investigators. 相似文献
16.
Geolocation errors in excess of 20-30 km have been routinely observed in SSM/I data. Potential error sources due to inaccurate spacecraft ephemeris, spacecraft predict ephemeris, and the geolocation algorithm are examined. In addition, the effects of possible misalignment of the SSM/I instrument about its spin axis or to the spacecraft and potential spacecraft attitude errors are considered. It is found that the use of accurate spacecraft ephemerides removes about half of the geolocation error. In the cases studied, the remaining error can be reduced to below 7 km by employing a fixed set of effective spacecraft attitude corrections in the geolocation algorithm; 85-GHz imagery is presented to provide a visual evaluation of the geolocation errors along with the reduction of these errors 相似文献
17.
Robinson W.D. Kummerow C. Olson W.S. 《Geoscience and Remote Sensing, IEEE Transactions on》1992,30(3):419-429
The authors describe and apply a correction technique for matching the resolution of all the frequencies of the Special Sensor Microwave/Imager (SSM/I) to the 25-km spatial resolution of the 37-GHz channel. To accomplish this, it is necessary to increase the spatial resolution of the 19- and 22-GHz channels while degrading that of the 85-GHz channel. It is found that the approach produces adequate enhancement of the spatial resolution to make such a correction worthwhile. Results suggest that this technique decreases brightness temperature differences stemming solely from spatial resolution differences by over 50% for the low resolution channels with only a modest increase in random noise. The correction can also help to better resolve small features which would otherwise be lost due to the lack of resolution 相似文献
18.
19.
《Geoscience and Remote Sensing, IEEE Transactions on》2001,39(10):2148-2157
With data sets gained from Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) microwave channels, Geostationary Meteorological Satellite (GMS-5) infrared channels, and ship-measured data, the statistical algorithms to estimate sea surface temperature and near-sea surface air humidity around Taiwan and the South China Sea areas are developed. Then a new, improved method to estimate near-sea surface air temperature based on the algorithm proposed by Konda et al. (1996) is established in this study. The results estimated with SSM/I data show that the root mean square error (RMSE) of SST, near-sea surface air humidity and air temperature over the oceans around Taiwan and the South China Sea are 1.2 K,1.43 g/kg, and 1.6 K, respectively. The results with GMS data are 1.7 K,1.71 g/kg and 1.7 K, respectively. The results also show that the improvements in the algorithm of Konda et al. simplify the computation scheme, improve the accuracy, and match the regional ocean-atmosphere properties in retrieving near-sea surface air temperature. The estimate produced using SSM/I and GMS data also show good consistency between them, both in temporal and spatial variations. Basically, the accuracy of this result implies strong potential for application of satellite data to relative studies and operational work in the ocean-atmosphere interaction 相似文献
20.
For pt.I see ibid., vol.39, no.12, p.2566-74 (2001). To estimate integrated precipitable water vapor along with liquid water path and water vapor effective profile (i.e. standard atmospheric profile approximation), utilizing the Special Sensor Microwave/Imager (SSM/I) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometers, an operative procedure was developed and assessed. This procedure is based on a fast nonlinear physical inversion algorithm (PIn) developed by the authors. A large data set of near-coincident TMI and SSM/I data acquisitions were collected and used to supply the procedure. Retrieved parameters were compared against retrievals achieved with well-accepted statistical algorithms, and consistency between TMI and SSM/I retrievals was confirmed. As far as TMI and SSM/I precipitable water retrieving consistency is concerned, this research revealed a linear relationship up to 20 kg/m2 and a general overestimate of TMI retrieving, for higher values. A new algorithm for obtaining integrated precipitable water from TMI brightness temperatures was introduced and the goodness of its accuracy was reported. The procedure proved to be reliable and portable and its integrated precipitable water vapor retrieving was assessed to be as accurate as the best radiometric retrieving algorithms, reported in literature. For SSM/I data, developed-procedure liquid water path estimates seemed to be in good agreement with statistical retrievals. Eventually the procedure provided effective water vapor vertical profiles which belong to a deterministic distribution area characterized by an upper and lower limit; it was confirmed that SSM/I and TMI vertical profile distribution areas mainly overlap even if they are characterized by different sensitivities to profile parameters 相似文献