首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oleamide was previously reported to resist ruminal biohydrogenation and elevate milk oleic acid concentration when fed to lactating Holstein cows. To determine if Jersey cows responded similarly to oleamide, four lactating Jersey cows (mean 417 kg of body weight and 64 days in milk) were fed four diets in a 4x4 Latin square with 2-wk periods. Diets were total mixed ration containing 47% corn silage and 53% concentrate (dry matter basis) and were supplemented with no added fat (control), or with 3.5% added fat from either higholeic canola oil, a commercial source of oleamide, or oleamide synthesized from oleic acid and urea. The canola oil supplement had no effect on milk yield or composition. Compared to canola oil, the oleamide supplements reduced milk yield, dry matter intake, and milk fat and protein contents. Milk oleic acid concentration increased from 17.4% of total fatty acids for the control diet to 22.1% for the canola oil diet. Both oleamides further increased milk oleic acid to 30.0 and 27.1% of total fatty acids for the commercial and synthesized oleamides, respectively. Milk palmitic acid was reduced and stearic acid was increased by all fat supplements but more so by the oleamides than by the canola oil. Consistent with previous reports that fatty acyl amides resist ruminal biohydrogenation, feeding oleamide to Jersey cows in this study increased milk oleic acid concentration but had negative effects on feed intake and milk yield.  相似文献   

2.
Fatty acid profiles with emphasis on linoleic, linolenic, oleic, and conjugated linoleic acid (CLA) were compared in milk from dairy cows fed diets containing 3.25% supplemental fat and a control diet containing no supplemented fat. The fat was supplied by either whole ground solin, flax, or canola oilseed. Solin (linola) is a new cultivar of flax that contains 28% linoleic acid in the seed, Twelve multiparous Holstein cows were assigned to one of four dietary treatments. The experimental design was a 4 x 4 Latin square with each period consisting of 16 d for adjustment to the diet followed by a 5-d sampling period. Feed intake, milk yield, milk fat yield, and milk fat percentage were not affected by treatment. Adding solin, flax, or canola oilseed to lactation diets produced the highest proportions of linoleic (C18:2), linolenic (C18:3), and oleic (C18:1) acids, respectively, in the lipid fraction of the milk of the cows consuming these diets. The proportions of C6:0 to C16:1 were depressed in the milk fat of cows fed the oilseed diets, compared with the control diet. Increasing the lactation diet levels of C18:2, by using different oilseeds, increased CLA to 1.5% of milk fatty acids. The content of CLA in milk fatty acids, however, did not increase with the solin-supplemented diet compared with the canola-supplemented diet even though the C18:2 level was higher in the former diet.  相似文献   

3.
We determined the effects of feeding canola oil or infusing it into the abomasum on rumen fermentation, nutrient digestibility, duodenal flows of fatty acids, and milk composition in Holstein cows. Five ruminally and duodenally cannulated Holstein cows in late lactation were used in a 3 x 5 incomplete Latin square design. Treatments were 1) Control: basal diet (CON), 2) Control+supplementation of canola oil at 1 kg/d in the feed (FED), and 3) Control+abomasal infusion of canola oil at 1 kg/d (INF). Compared with CON, feed intake, ruminal fermentation characteristics, ruminal and total tract digestibilities of nutrients were not significantly affected by FED treatment but duodenal flows and milk concentrations of fatty acids (FA) such as trans-11 18:1 and cis-9 trans-11 18:2 (conjugated linoleic acid, CLA) were increased. In contrast to the effects of FED, INF reduced feed intake, total VFA production, intestinal flows of nutrients, FA digestibility and yields of milk and milk fat. Both FED and INF significantly reduced the proportions of saturated and medium-chain FA, and increased cis 18:1 in milk. Concentrations of 18:2n-6 and 18:3n-3 in milk were increased nearly 2-fold with INF relative to CON. Dietary or postruminal supplementation of canola oil to late-lactation cows reduced saturated FA and increased unsaturated C18 in milk but nutrient digestion was adversely affected with abomasal infusion of canola oil.  相似文献   

4.
The effects of feeding rumen-inert fat sources on production responses of lactating dairy cows have been well reported but less thoroughly described in lactating dairy buffalo. The objective of this study was to investigate the effect of oil and 2 different rumen-inert fat sources on dry matter intake, milk yield, milk composition, and milk fatty acid (FA) profile in Nili Ravi buffalo. Twelve multiparous mid-lactating Nili Ravi buffaloes received 4 treatments in a 4 × 4 Latin square design with a period length of 21 d. The treatments were (1) the basal diet without supplementation of oil or fats (CTRL), (2) the basal diet supplemented with canola oil (CO), (3) the basal diet supplemented with calcium salts of palm FA (Ca-FA), and (4) the basal diet supplemented with high palmitic acid (PA). Dry matter intake was decreased by 4.4% in the CO compared with Ca-FA and PA. Milk yield and milk fat yield were increased by 7.8 and 14.3%, respectively, in CO, Ca-FA, and PA compared with the CTRL. Milk fat content increased by 7.5%, whereas milk fat yield tended to increase with the supplementation of Ca-FA and PA compared with CO. No effect on milk yield and milk composition was observed in Ca-FA versus PA treatments. The yield of medium-chain FA was increased by Ca-FA and PA versus CO. The CO treatment increased the yield of long-chain FA compared with Ca-FA and PA treatments. Plasma glucose level was higher in CO, Ca-FA, and PA compared with the CTRL. In conclusion, feeding rumen-inert fats in the lactating buffalo diet proved to be a useful strategy to increase the 3.5% fat-corrected milk yield due to the higher milk fat content in this study.  相似文献   

5.
Four multiparous Holstein cows were used in a 4 x 4 Latin square experiment to study the effects of fat sources rich in omega-3 fatty acids on milk production and composition, follicular development, and prostaglandin secretion. All cows were fed a total mixed diet containing 60% grass silage and 40% concentrate. The four treatments were concentrates based either on Megalac, formaldehyde-treated whole linseed, a mixture (50:50, oil basis) of fish oil and formaldehyde-treated whole linseed, or no fat source in the concentrate but with 500 g per day of linseed oil being infused into the duodenum. Feed intakes and milk yield were similar among treatments. In general, the lowest digestibility was observed for the formaldehyde-treated whole linseed treatment. Feeding fish oil decreased milk fat and protein percentages. Alpha-linolenic acid increased from 1.0 to 13.9% of milk fatty acids with linseed oil infusion. This confirms the high potential to incorporate alpha-linolenic acid into milk, and suggests that the formaldehyde treatment had little effect to limit biohydrogenation in the rumen. Increasing the supply of alpha-linolenic acid to these cows did not result in an increase in the concentration of eicosapentaenoic acid in milk. Levels of 13,14-dihydro-15-keto-PGF2alpha in plasma were higher for cows receiving formaldehyde-treated linseed and fish oil. Increases in this metabolite in response to oxytocin challenge, tended to be lower for cows given linseed either as sole oil supplement in the diet or as a duodenal infusion of linseed oil. Follicle dynamics were similar among treatments. Larger corpora lutea (CL) were found with cows that received high levels of omega-3 fatty acids through the diet as formaldehyde-treated linseed or as a mixture of formaldehyde-treated linseed and fish oil, although CL were smaller when cows were infused with linseed oil into the duodenum. These results suggest that the improvement in gestation rate that was observed when feeding increased levels of alpha-linolenic acid in earlier work may partly result from lower levels of production of the dienoic prostaglandin PGF2alpha.  相似文献   

6.
Twenty multiparous Holstein cows were used in a 16-wk trial. A block of 10 cows received a control diet, based on corn silage, and the other block of 10 cows successively received four diets with 1) an extruded blend of canola meal and canola seeds, 2) canola meal and whole canola seeds, 3) canola meal and ground canola seeds, or 4) canola meal and calcium salts of canola oil fatty acids. Canola fat represented about 2% of dietary dry matter. Compared to control cows, treated cows had similar dry matter intake, milk production, and daily milk output of true protein or fat. Protein contents of milk was decreased by all treatments, with a lower effect of extruded or whole canola seeds. Milk fat contents was lowered by all treatments, extruded seeds and calcium salts resulting in most important effects. All treatments lowered the percentage of fatty acids with 12 to 16 carbons in milk fat, increased C18:0 and cis-C18:1 percentages, and the proportion of liquid fat in butter between 0 and 12 degrees C. Calcium salts and, to a lesser extent extruded seeds, resulted in most important improvements of milk fatty acid profile and butter softness, whereas whole seeds had low effects.  相似文献   

7.
Four ruminally fistulated primiparous lactating Holstein cows were assigned to a 4 × 4 Latin square design to determine the effects of the site of administration (rumen or abomasum) of flax oil and flax hulls on diet digestibility and milk fatty acid profile of dairy cows. The treatments were 1) oil and hulls administered in the rumen and abomasal infusion of water (RUM/RUM), 2) oil and hulls infused in the abomasum (ABO/ABO), 3) oil administered in the rumen and hulls infused in the abomasum (RUM/ABO), and 4) oil infused in the abomasum and hulls placed in the rumen (ABO/RUM). Cows on the ABO/ABO and RUM/RUM treatments had the highest and lowest amounts of basal dry matter eaten, respectively. Higher dry matter digestibility was obtained when flax oil bypassed the rumen (ABO/ABO and ABO/RUM) compared with when flax oil was administered directly in the rumen (RUM/ABO and RUM/RUM). Apparent digestibility of ether extract was higher when flax hulls were administered in the rumen (RUM/RUM and ABO/RUM) compared with when flax hulls were infused in the abomasum (ABO/ABO and RUM/ABO). The lowest digestibility of acid detergent fiber and neutral detergent fiber was obtained when both flax products were added in the rumen, which may be attributed to the high amount of oil present in the rumen (7.8% of total dry matter input). The lowest yield of 4% fat-corrected milk was obtained for cows on the RUM/RUM treatment, probably as a result of lower dry matter intake and digestibility of fiber. Milk concentrations of protein, fat, total solids, and lactose were similar among treatments. Administration of oil and hulls in the rumen resulted in the highest concentrations of intermediate products of biohydrogenation and total trans fatty acids in milk fat compared with the other treatments. All ratios of n-6 to n-3 fatty acids in milk fat were lower than the 4 to 1 ratio recommended to improve human health. These results suggest that the presence of both flax oil and flax hulls in the rumen decreases 4% fat-corrected milk yield and digestibility but provides a desirable fatty acid profile of milk to enhance consumers’ health.  相似文献   

8.
The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 ± 11.9 kg body weight and 28 ± 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (≥18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without affecting milk yield or composition of milk.  相似文献   

9.
《Journal of dairy science》2022,105(5):3861-3870
Modification of milk fat composition might be a desirable method to alter manufacturing characteristics or produce dairy products low in saturated fat that more closely meet consumer dietary preferences. The aim of this research was to evaluate functional properties of cream obtained from milks with fat composition modified by altering the profile of long-chain fatty acids (FA) absorbed from the intestine. A control and 5 mixtures of long-chain free FA were infused into the abomasum of lactating dairy cows in a 6 × 6 Latin square design with 21-d periods. Treatments were as follows: (1) control (no FA infused), (2) mostly saturated FA (C16:C18 = 0.74), (3) low linoleic palm FA (C16:C18 = 0.73), (4) palm FA (C16:C18 = 0.73), (5) soy FA (C16:C18 = 0.10), and (6) high palmitic soy FA (C16:C18 = 0.73). All treatments included meat solubles and Tween 80 as emulsifiers. Viscosity, overrun, whipping time, foam firmness, and foam stability were evaluated in creams (33% fat). Cream from cows infused with soy FA (treatment 5) had the longest whipping time and lowest overrun, foam stability, viscosity, melting point, firmness, and solid fat content at 5 and 20°C because the fat had the highest unsaturated FA content. Increasing palmitic acid content of soy FA (treatment 6) improved functional variables in cream relative to soy FA alone. Differences among treatments 1 to 4 were less pronounced because of the effect of C18:1 trans in treatments 3 and 4 on milk fat yield and composition. Milk fat from cows infused with palm FA (treatment 4) exhibited comparable or better functionality than control cream. Increased polyunsaturated FA in milk fat resulted in increased amounts of triglyceride (TG) fractions with 28, 30, 38, and 40 carbon numbers, increased oleic acid resulted in increased 50-carbon TG, and higher palmitic and myristic acids resulted in greater 44, 46, and 48 carbon number TG. These TG groups consistently correlated with functional properties of creams from different treatments. Our results indicated that optimal functionality of cream is dependent more on its content of palmitic acid than on unsaturated FA. However, an optimal composition of milk fat for cream functional characteristics might be obtained through nutritional manipulation of diets for dairy cows to deliver an optimal profile of FA.  相似文献   

10.
A control diet and a fish oil diet were fed to 12 multiparous Holstein cows to determine how the incorporation of Menhaden fish oil in the diet would influence the fatty acid composition, especially the conjugated linoleic acid and transvaccenic acid, contents of milk and butter. The control diet consisted of a 50:50 ratio of forage to concentrate, and the fish oil diet consisted of the control diet with 2% (on a dry matter basis) added fish oil. Milk from cows fed the control diet contained higher average concentrations of milk fat (3.37%) compared with milk from cows fed the fish oil diet (2.29%). Milk from cows fed fish oil contained higher concentrations of conjugated linoleic acid, transvaccenic acid, and total unsaturated fatty acids (0.68 and 2.51; 1.42 and 6.28; and 30.47 and 41.71 g/100 g of fat, respectively). Butter made from the fish oil diet milk also had higher concentrations of conjugated linoleic acid, transvaccenic acid, and unsaturated fatty acids. Penetrometer readings indicated fish oil diet butters were softer at 4 and 20 degrees C than the control diet butters. Acid degree values were similar in the fish oil butters compared with the control butters. No significant difference was found in the flavor characteristics of milk and butter from cows fed the control and fish oil diets. Production of milk and butter with increased amounts of conjugated linoleic acid, transvaccenic acid, and other beneficial fatty acids may have a desirable impact on the health of consumers and lead to increased sales.  相似文献   

11.
为寻找与中国人乳脂脂质组成高相似的天然人乳替代脂,分析比较了3种鱼油(金鲳鱼油、银鲳鱼油和巴沙鱼油)的总脂肪酸、sn-2位脂肪酸、甘油三酯组成和含量。结果表明:金鲳鱼油中棕榈酸、油酸和亚油酸含量分别为24.93%、25.61%和26.52%,其中sn-2位棕榈酸的含量为39.71%,占总棕榈酸比例为53.10%;在3种鱼油中,金鲳鱼油总脂肪酸组成最接近中国人乳脂;甘油三酯组成分析结果证实,金鲳鱼油中富含1-油酸-2-棕榈酸-3-亚油酸甘油三酯(OPL,24.36%),其含量显著高于其他两种鱼油,且其1,3-二油酸-2-棕榈酸甘油三酯(OPO)的含量(16.79%)接近报道的中国人乳脂的平均含量(15.84%)。因此,金鲳鱼油是理想的中国婴儿配方奶粉专用油脂基料油,在人乳替代脂中具有良好的发展前景。  相似文献   

12.
Recent research has focused on the importance of supplying essential fatty acids to the lactating dairy cow. The addition of essential fatty acids, specifically linoleic and linolenic acid, to dairy cow diets has been investigated as a method to increase reproductive efficiency. Rumen bacteria, however, biohydrogenate polyunsaturated fatty acids (PUFA) to saturated fatty acids. This is an important issue because it can also lead to milk fat depression when unsaturated fatty acids are fed. The formation of Ca salts has previously been shown to partially protect unsaturated fatty acids from rumen biohydrogenation. The objective of this experiment was to evaluate feed intake, milk production, and milk composition of cows fed Ca salts of palm fatty acids (CS) compared with those fed Ca salts of palm fatty acids with an increased content of PUFA (CS+PUFA). Nineteen lactating Holstein cows were used in a switchback experiment to determine any differences between CS and CS+PUFA on milk production and composition. This experiment consisted of 3 consecutive periods of 14 d. Treatments were formulated to provide 450 g/d (dry matter basis) of the Ca salt supplement and were mixed with the same basal ration. Milk weights and feed intakes were recorded daily for each cow. Milk samples were collected the last 2 d of each period and analyzed for milk composition and fatty acids. Dry matter intake [28.0 vs. 27.0 kg/d; standard error of the mean (SEM) = 0.4] and milk production (44.4 vs. 44.0 kg/d; SEM = 0.7) were not different between treatments for CS and CS+PUFA, respectively. Milk fat percentage (3.34 vs. 3.22%; SEM = 0.07) and milk protein percentage (2.78 vs. 2.80%; SEM = 0.01) were not different for CS- and CS+PUFA-fed cows. Feeding CS+PUFA reduced the concentration of palmitic acid in milk fat (28.3 vs. 26.8 wt%; SEM = 0.3). Supplementation of CS+PUFA increased the linoleic acid concentration (3.96 vs. 4.61 wt%; SEM = 0.1) of milk fat, indicating that linoleic acid was partially protected from rumen biohydrogenation. Concentrations of conjugated linoleic acid were also increased (0.44 vs. 0.52 wt%; SEM = 0.02) when cows consumed CS+PUFA, indicating that some biohydrogenation did occur. Supplementing CS+PUFA did not alter milk production, milk fat percentage, or dry matter intake when compared with CS. The CS+PUFA supplement supplied more linoleic acid to the small intestine for milk fat synthesis.  相似文献   

13.
The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono-unsaturated (mostly cis-9 18:1) and decreased polyunsaturated, total trans-, and conjugated linoleic fatty acids concentrations in milk fat. In this study, compared with conventional, high-linoleic-acid variety extruded soybean meal, the Plenish soybean diets increased milk fat concentration and tended to increase fat yield, decreased feed efficiency, and modified milk fatty acid profile in a manner expected from the greater concentration of oleic acid in Plenish soybean oil.  相似文献   

14.
A novel whey protein emulsion gel (WPEG) complex was developed to protect dietary unsaturated fatty acids from rumen biohydrogenation with the goal of modifying the fatty acid composition of milk fat. Three experiments were conducted with WPEG complexes made from either whey protein concentrate containing 80% crude protein, whey protein isolate, or whey protein concentrate high-gel capacity. Each experiment lasted 3 wk. All cows received a basal total mixed ration (TMR). During wk 1 and 3, all cows received only the TMR. During wk 2, 3 control cows received 330 g/d of soybean oil added to the TMR, and the other 3 cows received 330 g/d of soybean oil in one of the WPEG complexes. During wk 2, C18:2 increased from 3.29 to 5.88 g/100 g of fat in Experiment 1, 2.91 to 7.42 g/100 g of fat in Experiment 2, and 3.57 to 6.56 g/100 g of fat in Experiment 3 for WPEG cows. Fatty acid C18:3 increased from 0.51 to 0.84, 0.52 to 1.15, and 0.51 to 0.97 g/100 g of fat for Experiments 1, 2, and 3, respectively, for WPEG cows. Higher proportions of C18:1 trans-9 in milk fat of control cows compared with WPEG cows were seen in all experiments. The proportion of C18:1 trans-11 was also higher in control cows in Experiments 1 and 2, but not in Experiment 3. The WPEG complexes successfully protected unsaturated fatty acids from rumen biohydrogenation and resulted in an increase in the unsaturated fatty acid composition of milk fat produced by Holstein cows without increasing the trans 18-carbon monoenes.  相似文献   

15.
Four combinations of prilled fat and canola oil were fed to 10 lactating Holstein cows in a replicated 5 x 5 Latin square to determine whether mixing plant oil with a rumen inert fat had additive effects on digestive and lactation responses. Five diets of concentrate and corn silage (1:1, DM basis) contained either no added fat (control) or 5% fat comprising 100, 67, 33, or 0% prilled fat and the remainder canola oil. The fat supplement containing 100% prilled fat appeared to be rumen-inert because it caused no changes in ruminal VFA concentration, acetate to propionate ratio, or total tract fiber digestion. Prilled fat increased milk production, FCM, and milk fat percentage but decreased milk protein percentage, including casein content. Increasing canola oil in the fat supplement caused linear declines in ruminal VFA, acetate to propionate ratio, and milk production. Milk production efficiency (weight FCM/weight DMI) exceeded the control diet when fat supplements contained 100 or 67% prilled fat but dropped below control for 33 and 0% prilled fat. This study demonstrates additive effects of combining canola oil with hydrogenated, prilled fat on ruminal fermentation but nonadditive effects on milk production efficiency and milk composition. At low levels of supplementation, plant oils, such as the canola oil used in this study, can inhibit ruminal fermentation but still maintain milk production efficiency.  相似文献   

16.
The aim of this study was to investigate the effects of conjugated linoleic acid supplementation on the synthesis of milk fat in pasture-fed Friesian cows. In four cows, a commercial mixture containing 62.3% (wt/vol) conjugated linoleic acid was infused intraabomasally to avoid rumen fermentation and biohydrogenation. The design was a 4 x 4 Latin square in which each cow received infusions of 0, 20, 40, and 80 g/d of conjugated linoleic acid mixture for 4 d. Cows were fed freshly cut ryegrass/white clover pasture ad libitum. Milk fat concentration was decreased by 36, 43, and 62% and milk fat yield was decreased by 32, 36, and 60% by the 20, 40, and 80 g of conjugated linoleic acid/d treatments. Dry matter intake, milk protein concentration, and protein yield were unaffected by treatments; however, milk yield was increased by 11% during the 40-g conjugated linoleic acid/d treatment. The effects of conjugated linoleic acid infusion were most pronounced in reducing de novo fatty acid synthesis and desaturation. Results show that the inhibitory effect of this conjugated linoleic acid mixture on milk fat synthesis occurs in pasture-fed cows, and demonstrate the potential to dramatically alter gross milk composition. This technology could offer a management tool to manipulate milk composition and energy demands of pasture-fed cows.  相似文献   

17.
Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n = 48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.  相似文献   

18.
刘亚东  宋秋  支潇  霍贵成 《食品工业科技》2012,33(18):171-173,189
脂肪酸的组成和位置分布影响乳脂肪的物理和营养特性。本文测定了马奶和母乳总脂肪酸组分并且通过脂肪酶水解马奶和母乳脂肪,薄层色谱分离出2-甘油一酯,甲酯化后气相色谱测定了母乳和马奶中sn-2脂肪酸。结果表明,母乳中棕榈酸、油酸、亚油酸含量分别为19.07%、36.43%、23.73%,马奶中含量分别为24.47%、17.40%、4.78%。母乳sn-2位脂肪酸中饱和脂肪酸占59.41%,其中含棕榈酸48.36%,肉豆蔻酸6.00%,马奶sn-2位脂肪酸中饱和脂肪酸占71.46%,含棕榈酸47.00%,肉豆蔻酸12.48%。母乳脂肪酸的分布并非随机的,马奶脂肪酸分布类似于母乳,为母乳脂肪替代物的研究提供一定的数据支持及底物参考。  相似文献   

19.
Eight multiparous Holstein and four multiparous Brown Swiss (78 +/- 43 DIM) cows were used in a 4 x 4 Latin square with 28-d periods to evaluate if feeding fish oil with a source of linoleic acid (extruded soybeans) would stimulate additional amounts of conjugated linoleic acid in milk. Four treatments consisted of a control diet with a 50:50 ratio of forage to concentrate (DM basis), a control diet with 2% added fat from either menhaden fish oil or extruded soybeans, or a combination of fish oil and extruded soybeans each adding 1% fat. DM intake (24.3, 21.6, 24.5, and 22.5 kg/d, for control, fish oil, extruded soybeans, and combination diets, respectively), milk production (32.1, 29.1,34.6, and 31.1 kg/d), and milk fat content (3.51, 2.79, 3.27, and 3.14%) were lower for cows that consumed either fish oil-containing diet, especially the 2% fish oil diet. The proportion of n-3 fatty acids in milk fat increased similarly among all three fat-supplemented diets. Concentrations of transvaccenic acid (1.00, 4.16, 2.17, and 3.51 g/100 g of fatty acids) and cis-9, trans-11 conjugated linoleic acid (0.60, 2.03, 1.16, and 1.82 g/100 g of fatty acids) in milk fat increased more with fish oil than with extruded soybeans. When fed the combination diet, these fatty acids were approximately 50% higher than expected for Holsteins, whereas concentrations were similar for Brown Swiss compared with feeding each fat source separately. These data indicated that fish oil modifies ruminal or systemic functions, stimulating increased conversion of linoleic acid into transvaccenic and conjugated linoleic acids.  相似文献   

20.
Six lactating Jersey cows were used in a 6 x 6 Latin square with 14-d periods to evaluate different ratios of canola oil and oleamide on nutrient digestibility, plasma fatty acids, and plasma hormones. The control diet contained no added fat. All other diets contained 3.5% added fat consisting of 0, 25, 50, 75, and 100% as oleamide and the remainder as canola oil. Data were collected during the final 4 d of each period. Dry matter intake was reduced by the addition of canola oil to the diet, and further reduced by replacing canola oil with oleamide. Milk yield was not affected by diet but increasing oleamide proportion in the fat supplement caused linear increases in cis-C18:1 and linear decreases in C4 to C16 fatty acids in milk. Adding canola oil reduced total tract digestibilities of fiber and fatty acids, but had no effect on the digestibilities of dry matter or protein. Replacing canola oil with oleamide increased protein digestibility linearly, and increased digestibility of fiber (quartic relationship) and fatty acids (quadratic relationship). Oleic acid concentration in plasma increased by adding canola oil to the diet, and was further increased by replacing canola oil with oleamide. Diet had no effect on plasma concentrations of insulin or IGF-I. Oleamide fed to Jersey cows in this study was highly digestible and had no deleterious effects on total tract digestility of fiber or protein. Increasing oleic acid concentration in plasma lipids while maintaining a constant level of added fat in the ration had no effect on circulating concentrations of insulin or IGF-I in Jerseys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号