首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximate query processing using wavelets   总被引:7,自引:0,他引:7  
Approximate query processing has emerged as a cost-effective approach for dealing with the huge data volumes and stringent response-time requirements of today's decision support systems (DSS). Most work in this area, however, has so far been limited in its query processing scope, typically focusing on specific forms of aggregate queries. Furthermore, conventional approaches based on sampling or histograms appear to be inherently limited when it comes to approximating the results of complex queries over high-dimensional DSS data sets. In this paper, we propose the use of multi-dimensional wavelets as an effective tool for general-purpose approximate query processing in modern, high-dimensional applications. Our approach is based on building wavelet-coefficient synopses of the data and using these synopses to provide approximate answers to queries. We develop novel query processing algorithms that operate directly on the wavelet-coefficient synopses of relational tables, allowing us to process arbitrarily complex queries entirely in the wavelet-coefficient domain. This guarantees extremely fast response times since our approximate query execution engine can do the bulk of its processing over compact sets of wavelet coefficients, essentially postponing the expansion into relational tuples until the end-result of the query. We also propose a novel wavelet decomposition algorithm that can build these synopses in an I/O-efficient manner. Finally, we conduct an extensive experimental study with synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based approach compared to sampling and histograms. Our results demonstrate that our techniques: (1) provide approximate answers of better quality than either sampling or histograms; (2) offer query execution-time speedups of more than two orders of magnitude; and (3) guarantee extremely fast synopsis construction times that scale linearly with the size of the data. Received: 7 August 2000 / Accepted: 1 April 2001 Published online: 7 June 2001  相似文献   

2.
空间信息处理和地理信息系统等领域的数据管理涉及到海量、高维空间数据对象的处理。本文针对传统数据索引结构在处理这类空间数据时所存在的内存使用过大、I/O消耗过多等问题,通过改进选择查询的代价模型,给出了基于PQR-tree的查询和代价模型,以提高空间数据查询的性能。提出了基于PQR-tree的三阶段并行查询的方法,分别在任务创建、分配、执行阶段进行优化。提出在任务创建和任务分配阶段应用于空间查询中过滤和精炼阶段的有效算法。测试表明,本文算法在处理各种不同分布类型数据集过程中有效降低了空间数据处理对时间和空间的代价和需求,并且并行机制下的代价模型在预测和评估方面也具有较好的精确度。  相似文献   

3.
基于MapX的空间查询应用   总被引:6,自引:0,他引:6       下载免费PDF全文
空间查询是GIS应用系统的基本功能之一,空间查询的功能和效率是GIS应用系统的重要指标。本文讨论了利用MapX实现空间查询的方法,包括基本的图形与属性数据互查和基于空间关系的复杂查询,并给出了详细的实现方法和流程。  相似文献   

4.
The streaming evaluation is a popular way of evaluating queries on XML documents. Besides its many advantages, it is also the only option for a number of important XML applications. Unfortunately, existing algorithms focus almost exclusively on tree-pattern queries (TPQs). Requirements for flexible querying of XML data have motivated recently the introduction of query languages that are more general and flexible than TPQs. These languages are not supported by existing algorithms. In this paper, we consider a partial tree-pattern query (PTPQ) language which generalizes and strictly contains TPQs. PTPQs can express a fragment of XPath which comprises reverse axes and the node identity equality (is) operator, in addition to forward axes, wildcards and predicates. They constitute an important subclass of XPath, which is very useful in practice. Unfortunately, previous streaming algorithms for TPQs cannot be applied to PTPQs. PTPQs can be represented as dags enhanced with constraints. We explore this representation to design an original polynomial time streaming algorithm for PTPQs. Our algorithm aggressively filters incoming data that is irrelevant to the query and wisely avoids processing redundant query matches (i.e., matches of the query dag that do not contribute to new solutions). Our algorithm is the first one to support the streaming evaluation of such a broad fragment of XPath. We provide an analysis of it, and conduct an extensive experimental evaluation of its performance and scalability. Compared to the only known streaming algorithm that supports TPQs extended with reverse axes, our algorithm performs better by orders of magnitude while consuming a much smaller fraction of memory space. Current streaming applications have stringent requirements on query response time and memory consumption because of the large (possibly unbounded) size of data they handle. In order to keep memory usage and CPU consumption low for the PTPQ streaming evaluation, we design another streaming algorithm called Eager PSX for PTPQs. Its key feature is that it applies an eager evaluation strategy to quickly determine when node matches should be returned as solutions to the user and also to proactively detect redundant matches. We theoretically analyze Eager PSX, and experimentally test its time and space performance and scalability. We compare it with PSX. Our results show that Eager PSX not only achieves better space performance without compromising time performance, but it also greatly improves query response time for both simple and complex queries, in many cases, by orders of magnitude.  相似文献   

5.
The typical workload in a database system consists of a mix of multiple queries of different types that run concurrently. Interactions among the different queries in a query mix can have a significant impact on database performance. Hence, optimizing database performance requires reasoning about query mixes rather than considering queries individually. Current database systems lack the ability to do such reasoning. We propose a new approach based on planning experiments and statistical modeling to capture the impact of query interactions. Our approach requires no prior assumptions about the internal workings of the database system or the nature and cause of query interactions, making it portable across systems. To demonstrate the potential of modeling and exploiting query interactions, we have developed a novel interaction-aware query scheduler for report-generation workloads. Our scheduler, called QShuffler, uses two query scheduling algorithms that leverage models of query interactions. The first algorithm is optimized for workloads where queries are submitted in large batches. The second algorithm targets workloads where queries arrive continuously, and scheduling decisions have to be made online. We report an experimental evaluation of QShuffler using TPC-H workloads running on IBM DB2. The evaluation shows that QShuffler, by modeling and exploiting query interactions, can consistently outperform (up to 4x) query schedulers in current database systems.  相似文献   

6.
Processing point clouds often requires information about the point neighbourhood in order to extract, calculate and determine characteristics. We continue the tradition of developing increasingly faster neighbourhood query algorithms and present a highly efficient algorithm for solving the exact neighbourhood problem in point clouds using the GPU. Both, the required data structures and the kNN query, are calculated entirely on the GPU. This enables real‐time performance for large queries in extremely large point clouds. Our experiments show a more than threefold acceleration, compared to state‐of‐the‐art GPU based methods including all memory transfers. In terms of pure query performance, we achieve over answered neighbourhood queries per millisecond for 16 nearest neighbours on common graphics hardware.  相似文献   

7.
Ranking queries, also known as top-k queries, produce results that are ordered on some computed score. Typically, these queries involve joins, where users are usually interested only in the top-k join results. Top-k queries are dominant in many emerging applications, e.g., multimedia retrieval by content, Web databases, data mining, middlewares, and most information retrieval applications. Current relational query processors do not handle ranking queries efficiently, especially when joins are involved. In this paper, we address supporting top-k join queries in relational query processors. We introduce a new rank-join algorithm that makes use of the individual orders of its inputs to produce join results ordered on a user-specified scoring function. The idea is to rank the join results progressively during the join operation. We introduce two physical query operators based on variants of ripple join that implement the rank-join algorithm. The operators are nonblocking and can be integrated into pipelined execution plans. We also propose an efficient heuristic designed to optimize a top-k join query by choosing the best join order. We address several practical issues and optimization heuristics to integrate the new join operators in practical query processors. We implement the new operators inside a prototype database engine based on PREDATOR. The experimental evaluation of our approach compares recent algorithms for joining ranked inputs and shows superior performance.Received: 23 December 2003, Accepted: 31 March 2004, Published online: 12 August 2004Edited by: S. AbiteboulExtended version of the paper published in the Proceedings of the 29th International Conference on Very Large Databases, VLDB 2003, Berlin, Germany, pp 754-765  相似文献   

8.
The in–network aggregation paradigm in sensor networks provides a versatile approach for evaluating aggregate queries. Traditional approaches need a separate aggregate to be computed and communicated for each query and hence do not scale well with the number of queries. Since approximate query results are sufficient for many applications, we use an alternate approach based on summary data–structures. We consider two kinds of aggregate queries: location range queries that compute the sum of values reported by sensors in a given location range, and value range queries that compute the number of sensors that report values in a given range. We construct summary data–structures called linear sketches, over the sensor data using in–network aggregation and use them to answer aggregate queries in an approximate manner at the base–station. There is a trade–off between accuracy of the query results and lifetime of the sensor network that can be exploited to achieve increased lifetimes for a small loss in accuracy. Most commonly occurring sets of range queries are highly correlated and display rich algebraic structure. Our approach takes full advantage of this by constructing linear sketches that depend on queries. Experimental results show that linear sketching achieves significant improvements in lifetime of sensor networks for only a small loss in accuracy of the queries. Further, our approach achieves more accurate query results than the other classical techniques using Discrete Fourier Transform and Discrete Wavelet Transform. This work was supported in part by NASA under Cooperative Agreement NCC5–315.  相似文献   

9.
Approximation-Based Similarity Search for 3-D Surface Segments   总被引:1,自引:0,他引:1  
The issue of finding similar 3-D surface segments arises in many recent applications of spatial database systems, such as molecular biology, medical imaging, CAD, and geographic information systems. Surface segments being similar in shape to a given query segment are to be retrieved from the database. The two main questions are how to define shape similarity and how to efficiently execute similarity search queries. We propose a new similarity model based on shape approximation by multi-parametric surface functions that are adaptable to specific application domains. We then define shape similarity of two 3-D surface segments in terms of their mutual approximation errors. Applying the multi-step query processing paradigm, we propose algorithms to efficiently support complex similarity search queries in large spatial databases. A new query type, called the ellipsoid query, is utilized in the filter step. Ellipsoid queries, being specified by quadratic forms, represent a general concept for similarity search. Our major contribution is the introduction of efficient algorithms to perform ellipsoid queries on multidimensional index structures. Experimental results on a large 3-D protein database containing 94,000 surface segments demonstrate the successful application and the high performance of our method.  相似文献   

10.
Physical data layout is a crucial factor in the performance of queries and updates in large data warehouses. Data layout enhances and complements other performance features such as materialized views and dynamic caching of aggregated results. Prior work has identified that the multidimensional nature of large data warehouses imposes natural restrictions on the query workload. A method based on a “uniform” query class approach has been proposed for data clustering and shown to be optimal. However, we believe that realistic query workloads will exhibit data access skew. For instance, if time is a dimension in the data model, then more queries are likely to focus on the most recent time interval. The query class approach does not adequately model the possibility of multidimensional data access skew. We propose the affinity graph model for capturing workload characteristics in the presence of access skew and describe an efficient algorithm for physical data layout. Our proposed algorithm considers declustering and load balancing issues which are inherent to the multidisk data layout problem. We demonstrate the validity of this approach experimentally.  相似文献   

11.
In recent years, applications aimed at exploring and analyzing spatial data have emerged, powered by the increasing need of software that integrates Geographic Information Systems (GIS) and On-Line Analytical Processing (OLAP). These applications have been called SOLAP (Spatial OLAP). In previous work, the authors have introduced Piet, a system based on a formal data model that integrates in a single framework GIS, OLAP (On-Line Analytical Processing), and Moving Object data. Real-world problems are inherently spatio-temporal. Thus, in this paper we present a data model that extends Piet, allowing tracking the history of spatial data in the GIS layers. We present a formal study of the two typical ways of introducing time into Piet: timestamping the thematic layers in the GIS, and timestamping the spatial objects in each layer. We denote these strategies snapshot-based and timestamp-based representations, respectively, following well-known terminology borrowed from temporal databases. We present and discuss the formal model for both alternatives. Based on the timestamp-based representation, we introduce a formal First-Order spatio-temporal query language, which we denote Lt,\mathcal{L}_t, able to express spatio-temporal queries over GIS, OLAP, and trajectory data. Finally, we discuss implementation issues, the update operators that must be supported by the model, and sketch a temporal extension to Piet-QL, the SQL-like query language that supports Piet.  相似文献   

12.
The newly developed object-oriented database management systems provide rich facilities for the modeling and processing of structural as well as behavioral properties of complex application objects. However, due to their inherent generality, new functionalities to be added to these systems as they continue to evolve, and high performance demand in many application domains, efficient parallel algorithms and architectures would be needed to meet the performance requirement for processing large OODBs. In our previous work, we have shown that processing OODBs can be viewed as the manipulation of patterns of object associations. In this paper, we present several parallel, multiwavefront algorithms based on two approaches, i.e., identification and elimination approaches, to verify association patterns specified in queries. Both approaches allow more processors to operate concurrently on a query than the traditional tree-structured query processing approach, thus introducing a higher degree of parallelism in query processing. We present a graph model to transform the query processing problem into a graph problem. Based on the graph model, proofs of correctness of both approaches for tree-structured queries are given, and a combined approach for solving cyclic queries is also provided. We present a new data structure to represent associations between objects, parallel algorithms based on these approaches, and some evaluation results obtained from an actual implementation of these algorithms on an nCUBE 2 parallel computer.  相似文献   

13.
Automatic feature recognition aids downstream processes such as engineering analysis and manufacturing planning. Not all features can be defined in advance; a declarative approach allows engineers to specify new features without having to design algorithms to find them. Naive translation of declarations leads to executable algorithms with high time complexity. Database queries are also expressed declaratively; there is a large literature on optimizing query plans for efficient execution of database queries. Our earlier work investigated applying such technology to feature recognition, using a testbed interfacing a database system (SQLite) to a CAD modeler (CADfix). Feature declarations were translated into SQL queries which are then executed.The current paper extends this approach, using the PostgreSQL database, and provides several new insights: (i) query optimization works quite differently in these two databases, (ii) with care, an approach to query translation can be devised that works well for both databases, and (iii) when finding various simple common features, linear time performance can be achieved with respect to model size, with acceptable times for real industrial models. Further results also show how (i) lazy evaluation can be used to reduce the work performed by the CAD modeler, and (ii) estimating the time taken to compute various geometric operations can further improve the query plan. Experimental results are presented to validate our main conclusions.  相似文献   

14.
A common technique used to minimize I/O in data intensive applications is data declustering over parallel servers. This technique involves distributing data among several disks so as to parallelize query retrieval and thus, improve performance. We focus on optimizing access to large spatial data, and the most common type of queries on such data, i.e., range queries. An optimal declustering scheme is one in which the processing for all range queries is balanced uniformly among the available disks. It has been shown that single copy based declustering schemes are non-optimal for range queries. In this paper, we integrate replication in conjunction with parallel disk declustering for efficient processing of range queries. We note that replication is largely used in database applications for several purposes like load balancing, fault tolerance and availability of data. We propose theoretical foundations for replicated declustering and propose a class of replicated declustering schemes, periodic allocations, which are shown to be strictly optimal for a number of disks. We propose a framework for replicated declustering, using a limited amount of replication and provide extensions to apply it on real data, which include arbitrary grids and a large number of disks. Our framework also provides an effective indexing scheme that enables fast identification of data of interest in parallel servers. In addition to optimal processing of single queries, we show that this framework is effective for parallel processing of multiple queries. We present experimental results comparing the proposed replication scheme to other techniques for both single queries and multiple queries, on synthetic and real data sets. Recommended by: Ahmed Elmagarmid Supported by U.S. Department of Energy (DOE) Award No. DE-FG02-03ER25573, and National Science Foundation (NSF) grant CNS-0403342.  相似文献   

15.
Finding the occurrences of structural patterns in XML data is a key operation in XML query processing. Existing algorithms for this operation focus almost exclusively on path patterns or tree patterns. Current applications of XML require querying of data whose structure is complex or is not fully known to the user, or integrating XML data sources with different structures. These applications have motivated recently the introduction of query languages that allow a partial specification of path patterns in a query. In this paper, we consider partial path queries, a generalization of path pattern queries, and we focus on their efficient evaluation under the indexed streaming evaluation model. Our approach explicitly deals with repeated labels (that is, multiple occurrences of the same label in a query). We show that partial path queries can be represented as rooted dags for which a topological ordering of the nodes exists. We present three algorithms for the efficient evaluation of these queries. The first one exploits a structural summary of data to generate a set of path patterns that together are equivalent to a partial path query. To evaluate these path patterns, we extend a previous algorithm for path-pattern queries so that it can work on path patterns with repeated labels. The second one extracts a spanning tree from the query dag, uses a stack-based algorithm to find the matches of the root-to-leaf paths in the tree, and merge-joins the matches to compute the answer. Finally, the third one exploits multiple pointers of stack entries and a topological ordering of the query dag to apply a stack-based holistic technique. We analyze our algorithms and perform extensive experimental evaluations. Our experimental results show that the holistic algorithm outperforms the other ones. Our approaches are the first ones to efficiently evaluate this class of queries in the indexed streaming model.  相似文献   

16.
The main requirements for spatial query processing via mobile terminals include rapid and accurate searching and low energy consumption. Most location-based services (LBSs) are provided using an on-demand method, which is suitable for light-loaded systems where contention for wireless channels and server processing is not severe. However, as the number of users of LBSs increases, performance deteriorates rapidly since the servers’ capability to process queries is limited. Furthermore, the response time of a query may significantly increase with the concentration of users’ queries in a server at the same time. That is because the server has to check the locations of users and potential objects for the final result and then individually send answers to clients via a point-to-point channel. At this time, an inefficient structure of spatial index and searching algorithm may incur an extremely large access latency. To address this problem, we propose the Hierarchical Grid Index (HGI), which provides a light-weight sequential location-based index structure for efficient LBSs. We minimize the index size through the use of hierarchical location-based identifications. And we support efficient query processing in broadcasting environments through sequential data transfer and search based on the object locations. We also propose Top-Down Search and Reduction-Counter Search algorithms for efficient searching and query processing. HGI has a simple structure through elimination of replication pointers and is therefore suitable for broadcasting environments with one-dimensional characteristics, thus enabling rapid and accurate spatial search by reducing redundant data. Our performance evaluation shows that our proposed index and algorithms are accurate and fast and support efficient spatial query processing.  相似文献   

17.
We describe an approach for interactive collision detection and proximity computations on massive models composed of millions of geometric primitives. We address issues related to interactive data access and processing in a large geometric database, which may not fit into main memory of typical desktop workstations or computers. We present a new algorithm using overlap graphs for localizing the "regions of interest" within a massive model, thereby reducing runtime memory requirements. The overlap graph is computed off-line, pre-processed using graph partitioning algorithms, and modified on the fly as needed. At run time, we traverse localized sub-graphs to check the corresponding geometry for proximity and pre-fetch geometry and auxiliary data structures. To perform interactive proximity queries, we use bounding-volume hierarchies and take advantage of spatial and temporal coherence. Based on the proposed algorithms, we have developed a system called IMMPACT and used it for interaction with a CAD model of a power plant consisting of over 15 million triangles. We are able to perform a number of proximity queries in real-time on such a model. In terms of model complexity and application to large models, we have improved the performance of interactive collision detection and proximity computation algorithms by an order of magnitude.  相似文献   

18.
In recent years, researchers have begun to study inductive databases, a new generation of databases for leveraging decision support applications. In this context, the user interacts with the DBMS using advanced, constraint-based languages for data mining where constraints have been specifically introduced to increase the relevance of the results and, at the same time, to reduce its volume. In this paper we study the problem of mining frequent itemsets using an inductive database. We propose a technique for query answering which consists in rewriting the query in terms of union and intersection of the result sets of other queries, previously executed and materialized. Unfortunately, the exploitation of past queries is not always applicable. We then present sufficient conditions for the optimization to apply and show that these conditions are strictly connected with the presence of functional dependencies between the attributes involved in the queries. We show some experiments on an initial prototype of an optimizer which demonstrates that this approach to query answering is viable and in many practical cases it drastically reduces the query execution time.  相似文献   

19.
A spatial join is a query that searches for a set of object pairs satisfying a given spatial relationship from a database. It is one of the most costly queries, and thus requires an efficient processing algorithm that fully exploits the features of the underlying spatial indexes. In our earlier work, we devised a fairly effective algorithm for processing spatial joins with double transformation (DOT) indexing, which is one of several spatial indexing schemes. However, the algorithm is restricted to only the one-dimensional cases. In this paper, we extend the algorithm for the two-dimensional cases, which are general in Geographic Information Systems (GIS) applications. We first extend DOT to two-dimensional original space. Next, we propose an efficient algorithm for processing range queries using extended DOT. This algorithm employs the quarter division technique and the tri-quarter division technique devised by analyzing the regularity of the space-filling curve used in DOT. This greatly reduces the number of space transformation operations. We then propose a novel spatial join algorithm based on this range query processing algorithm. In processing a spatial join, we determine the access order of disk pages so that we can minimize the number of disk accesses. We show the superiority of the proposed method by extensive experiments using data sets of various distributions and sizes. The experimental results reveal that the proposed method improves the performance of spatial join processing up to three times in comparison with the widely-used R-tree-based spatial join method.  相似文献   

20.
A number of indexing techniques have been proposed in recent times for optimizing the queries on XML and other semi-structured data models. Most of the semi-structured models use tree-like structures and query languages (XPath, XQuery, etc.) which make use of regular path expressions to optimize the query processing. In this paper, we propose two algorithms called Entry-point algorithm (EPA) and Two-point Entry algorithms that exploit different types of indices to efficiently process XPath queries. We discuss and compare two approaches namely, Root-first and Bottom-first in implementing the EPA. We present the experimental results of the algorithms using XML benchmark queries and data and compare the results with that of traditional methods of query processing with and without the use of indexes, and ToXin indexing approach. Our algorithms show improved performance results than the traditional methods and Toxin indexing approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号