首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cd-enriched cadmium telluride (CdTe) polycrystalline films were grown on corning glass substrates by close spaced sublimation (CSS) technique. To our knowledge, Cd-enriched CdTe thin films by CSS have not been reported earlier. The structural investigations performed by means of X-ray diffraction (XRD) technique, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) showed that the deposited films exhibit a polycrystalline structure with 〈111〉 as preferred orientation. The structural, optical, and electrical properties of these films were analyzed as a function of the Cd concentration. For the films having an excess of Cd, the electrical resistivity dropped several orders of magnitude. The deposited films also showed that the value of resistivity decreased with increasing temperature manifesting the semiconducting behavior of the films. The results showed that using this deposition technique, n-type Cd-enriched CdTe polycrystalline film could be produced.  相似文献   

2.
Cadmium telluride thin films were prepared by the close spaced sublimation (CSS) technique, using CdTe powder as evaporant and were submitted to a chemical treatment at 25°C in a saturated CdCl2 solution (2.08 g/100 mL methanol), followed by heat treatment under vacuum ~10−3 mbar at 400°C for 30 min. The effect of chemical and thermal treatments on the crystallographic, morphological, optical, and electrical properties were studied through XRD, scanning electron microscope (SEM), spectrophotometry, and dc electrical resistivity measurements, respectively. The studies revealed that the CdTe grows in face centered cubic phase and that post-deposition treatment affects the morphology as well as the crystallographic properties. The effect on the morphology is stronger. Increase of the grain size was observed in the samples treated thermally. The electrical resistivity drops by a factor of 20 in CdCl2-immersed and heated samples.  相似文献   

3.
Electrochemical deposition of CdTe semiconductor thin films over transparent conducting glass substrates by sequential unipolar current pulses is described. The magnitude of pulsed current and pulse periodicity affects the crystalline structure, morphology, optical absorbance and composition of CdTe films. CdTe films formed under high magnitude pulsed current density ~5–15 mA cm−2 are crystalline with dominant cubic structure having (111) plane oriented parallel to the substrate. Stoichiometric CdTe film growth occurs with current pulses of short 25–300 ms periodicity and 3–50 ms duration. A mechanism of the CdTe growth involving in situ cathodic tellurization process step involving H2Te formation and reaction with electrochemically deposited Cd monolayer is described. CdTe film growth in the pulsed electrodeposition occurs under mass transport conditions under strong influence of high magnitude pulsed current. This results in much higher growth rates ~5–8 μm h−1 for CdTe films which is attractive for CdTe solar cells in a production environment.  相似文献   

4.
Tungsten‐doped SnO2 (WTO) thin films with a given thickness of about 300 nm have been prepared by magnetron sputtering with a substrate temperature in the range 400°C–700°C. The effects of substrate temperature on the structural, optical, and electrical properties and of WTO thin films have been investigated. A texture transition from (1 1 0) to (2 1 1) crystallographic orientations has experimentally been found by X‐ray diffraction measurements as substrate temperature is raised. It was found that all thin films showed smooth surface with no cracks and high transparency (>85%) with the optical band gap ranging from 4.22 to 4.32 eV. The mobility varied from 12.89 to 22.48 cm2·(V·s)?1 without reducing the achieved high carrier concentration of about 1.6 × 1020 cm?3. Such an increase in mobility is shown to be clearly associated with the development of (2 0 0) but concurrent degradation of (1 1 0) in WTO thin films.  相似文献   

5.
Highly transparent and conducting fluorine-doped ZnO (FZO) thin films were deposited onto glass substrates by radio-frequency (RF) magnetron sputtering, using 1.5 wt% zinc fluoride (ZnF2)-doped ZnO as sputtering target. Structural, electrical, and optical properties of the FZO thin films were investigated as a function of substrate temperature ranging from room temperature (RT) to 300°C. The cross-sectional scanning electron microscopy (SEM) observation and X-ray diffraction analyses showed that the FZO thin films were of polycrystalline nature with a preferential growth along (002) plane perpendicular to the surface of the glass substrate. Secondary ion mass spectrometry (SIMS) analyses of the FZO thin films showed that there was incorporation of F atoms in the FZO thin films, even if the substrate temperature was 300°C. Finally, the effect of substrate temperature on the transmittance ratio, optical energy gap, Hall mobility, carrier concentration, and resistivity of the FZO thin films was also investigated.  相似文献   

6.
Transparent conducting molybdenum (2 at.%) doped zinc oxide (MZO) films were prepared with various substrate temperatures by spray pyrolysis technique on glass substrates. The effect of substrate temperature on the structural, surface morphological, electrical, optical and photoluminescence properties of these films were studied. The X-ray diffraction analysis revealed that the films are polycrystalline in nature having a wurtzite structure with a preferred grain orientation in the (0 0 2) direction. The average crystallite size of the films increases from 17 nm to 28 nm with the increase of substrate temperature from 573 K to 623 K, thereafter it slightly decreases with further increase of substrate temperature to 723 K. Analysis of structural parameters indicates minimum strain and stress values for films deposited at a substrate temperature of 673 K. From atomic force microscopy (AFM) analysis, it is found that rms roughness of the films deposited at 623 K is a minimum, indicating better optical quality. The scanning electron microscopy (SEM) measurements showed that the surface morphology of the films changes with substrate temperature. Optical parameters such as optical transmittance, reflectance, refractive index, extinction coefficient, dielectric constant and optical band gap have been studied and discussed with respect to substrate temperature. Room temperature photoluminescence (PL) spectra show the deep-level emission in the MZO thin films. The films exhibit a low electrical resistivity of 6.22 × 10?2 Ω cm with an optical transmittance of 75% in the visible region at a substrate temperature of 623 K.  相似文献   

7.
《Ceramics International》2016,42(13):14581-14586
Aluminum and gallium co-doped ZnO (AGZO) thin films were grown by simple, flexible and cost-effective spray pyrolysis method on glass substrates at a temperature of 230 °C. Effects of equal co-doping with aluminum (Al) and gallium (Ga) on structural, optical and electrical properties were investigated by X-ray diffraction (XRD), UV–vis–NIR spectrophotometry and Current–Voltage (I–V) measurements, respectively. XRD patterns showed a successful growth with high quality polycrystalline films on glass substrates. The predominant orientation of the films is (002) at dopant concentrations ≤2 at% and (101) at higher dopant concentrations. Incorporation of Al and Ga to the ZnO crystal structure decreased the crystallite size and increased residual stress of the thin films. All films were highly transparent in the visible region with average transmittance of 80%. Increasing doping concentrations increased the optical band gap, from 3.12 to 3.30 eV. A blue shift of the optical band gap was observed from 400 nm to 380 nm with increase in equal co-doping. Co-doping improved the electrical conductivity of ZnO thin films. It has been found from the electrical measurements that films with dopant concentration of 2 at% have lowest resistivity of 1.621×10−4 Ω cm.  相似文献   

8.
《Ceramics International》2022,48(11):15274-15281
Cuprous oxide materials are of growing interest for optoelectronic devices and were produced by several chemical and physical methods. Here, we report on the structural, optical, and electrical properties of CuxO thin films prepared by the pulsed laser deposition technique. The substrate temperature, as well as the oxygen partial pressure in the deposition chamber, were varied to monitor the copper to oxygen ratio within the deposited films. The growth conditions were carefully optimized to provide the highest conductivity and mobility. Thus, 100 nm thick cuprous oxide films (Cu2O) deposited at 750 °C exhibited a resistivity of 16 Ω?cm, high mobility of 30 cm2/(V?s), and a bandgap of around 2 eV. The film deposited at the optimized deposition parameters on Nb:STO (001) substrate with Au top electrode showed a photovoltaic response with an open circuit voltage of 0.56 V. These results path the way to efficient solar cells made with Cu2O films via the pulsed laser deposition technique.  相似文献   

9.
Transparent ZnO and Al-doped ZnO (AZO) thin films have been prepared by radio frequency sputtering deposition at room temperature. The optical, electrical, and structural characteristics of the obtained films have been extensively investigated as a function of sputtering and annealing parameters. Spectrophotometry, X-ray diffraction (XRD), atomic force microscopy (AFM), four-point probe and Hall-effect measurements were employed. The ZnO films generally exhibited excellent crystalline properties, while providing a UV cut-off in the absorption spectrum for optical filtration. AZO thin films exhibited an average transparency (larger than 85%) over the visible region of the spectrum, and resistivity of the order of 10?3 Ω cm was obtained. The carrier concentration and electron mobility values proved to be dependent on the deposition parameters and annealing temperature. The obtained results showed that annealing temperatures higher than 400 °C were not necessary and potentially degraded the electronic properties of the AZO thin films.  相似文献   

10.
《Ceramics International》2015,41(7):8299-8304
In this study, Cu2ZnSnS4 (CZTS) thin films were deposited by spray pyrolysis technique at constant substrate temperature. The effects of the copper concentration on the structural, morphological and optical properties of the films were investigated. The copper concentration was varied from 0.15 to 0.25 M in the steps of 0.05 M. The structural studies revealed that the Cu poor film shows low intense peaks, but as Cu concentration increases a relatively more intense and sharper diffraction peaks (112), (200), (220), and (312) of the kesterite crystal structure were observed. Raman spectroscopy analysis confirmed the formation of phase-pure CZTS films. From the morphological studies, it is found that the grain size increased as the Cu concentration increases from 0.15 to 0.25 M. The optical band-gap values were estimated to be 1.61, 1.52 and 1.45 eV for copper concentration 0.15, 0.20 and 0.25 M, respectively. Photoelectrochemical cells using films of different copper concentrations were fabricated and the best cell exhibited an efficiency of 1.09% for 0.25 M of copper concentration.  相似文献   

11.
《Ceramics International》2020,46(6):7499-7509
Nanostructured thin films of CuO were deposited on silica glass substrates using reactive DC magnetron sputtering technique. Microstructural, morphological, optical, catalytic and photocatalytic properties of the prepared CuO thin films were examined using FESEM, AFM, Rutherford backscattering spectrometry, XRD, XPS, UV–Vis absorption and PL spectroscopy. FESEM showed nanostructures in the thin films, which were confirmed to be of monoclinic CuO by XRD analysis. Substrate temperature variation (40 °C, 100 °C and 300 °C) was found to significantly alter the optical, morphological, photocatalytic and structural properties of the CuO nanostructured thin film coatings. FESEM and AFM analyses showed decrease in size of nanostructures and surface roughness increase with increase in substrate temperature. Increase in UV–Vis absorbance and PL intensity of CuO thin films with decrease in crystallite size were noticed as the substrate temperature was increased. The prepared nanostructured CuO thin films exhibited highly enhanced photocatalytic activities and degraded dyes (MB and MO) in water in just 40 min under solar exposure and catalytic transformation of 4-nitrophenol (4-NP) took place in just 15 min. The developed CuO nanostructured thin film coatings are very promising for large scale, practical and advanced catalytic reduction of toxic 4-NP and photocatalytic applications in solar driven water purification.  相似文献   

12.
《Ceramics International》2016,42(9):11136-11149
Highly oriented Zn doped TiO2 thin films (0, 2, 4, 6 and 8 at%) were deposited by spray pyrolysis technique. X-ray diffraction analysis showed a strong orientation along (101) direction for 6 at% Zn with polycrystalline tetragonal anatase phase. Scanning electron microscopy observations revealed uniform distribution of spherical-shaped grains, whereas columnar arrangement of tetragonal-shaped grains with porous nature was revealed from atomic force microscopy. Transmittance spectra indicated a decrease in the energy band gap with increasing doping concentration; i.e. 3.55 up to 3.21 eV, attributed to grain refinement to the nanoscale regime. The optical constants such as refractive index and extinction coefficient as a function of wavelength, were determined; the low extinction coefficient values confirmed the good quality of the thin films. Photoluminescence spectra showed strong emissions at 423 and 437 nm with a weak emission at 505 nm, which confirmed the lesser defect density in 6 at% Zn film. The electrical properties studied by Hall Effect measurements revealed that the 6 at% Zn led to an increase in the carrier concentration, as well as an increase in the mobility with a least resistivity. The efficiency of dye sensitized solar cells, assembled by using natural dye extracted from Hibiscus Surattensis as sensitizer and Zn-doped TiO2 nanocrystalline thin films as a photoelectrode, was found to be around 1.22%.  相似文献   

13.
Cu(In1?xGax)Se2 (CIGS) thin films were prepared using a single quaternary target by RF magnetron sputtering. The effects of deposition parameters on the structural, compositional and electrical properties of the films were examined in order to develop the deposition process without post-deposition selenization. From X-ray diffraction analysis, as the substrate temperature and Ar pressure increased and RF power decreased, the crystallinity of the films improved. The scanning electron microscopy revealed that the grains became uniform and circular shape with columnar structure with increasing the substrate temperature and Ar pressure, and decreasing the RF power. The carrier concentration of CIGS films deposited at the substrate temperature of 500 °C was 2.1 × 1017 cm?3 and the resistivity was 27 Ω cm. At the substrate temperature above 500 °C, In and Se contents in CIGS films decreased due to the evaporation and it led to the deterioration of crystallinity. It was confirmed that CIGS thin films deposited at optimal condition had similar atomic ratio to the target value even without post-deposition selenization process.  相似文献   

14.
《Ceramics International》2020,46(11):18716-18724
Chemical bath deposition (CBD) method was used to deposit CdS thin films on soda-lime glass substrates by using n-methylthiourea (NTU) as an alternative sulphur source and were compared to typical thiourea (TU) precursor. The sulphur source concentration was varied from 0.01 M to 0.1 M and the impact on the microstructural, surface morphology, optical and electrical properties of the grown films were studied. Increasing n-methylthiourea concentration in the precursor yielded thinner films that are less than 100 nm thickness, surface morphology with average surface roughness of 6.4 nm, larger granular structure, wider band gap at 2.3 eV–2.6 eV range. Raman spectroscopy revealed Raman peak at 303 cm-1. In contrast, an increase in thiourea concentration resulted in thinner amorphous films, less distinct granular structure, narrower energy band gap from 2.3 eV to 2.4 eV and a resonance Raman peak at 302 cm-1. CdS thin film deposited from n-methylthiourea precursor at higher precursor concentration of 0.1 M showed better electrical properties such as lower resistivity and higher carrier mobility compared to the thin film deposited from typical thiourea precursor.  相似文献   

15.
《Ceramics International》2017,43(4):3748-3751
In2Te3 thin films were grown by thermal evaporation technique. The annealing of films played a major role to obtain stoichiometry, regardless of substrate temperature. Annealing at 300 ⁰C resulted in well oriented, mono-phased and nearly stoichiometric In2Te3 thin films. The variation in grain size of In2Te3 films associated with the substrate temperatures provides a significant control over the resistivity of the films, and the resistivity decreased with an increase in the grain size. The activation energy and optical band gap of stoichiometric In2Te3 films were found to be 0.01±0.005 eV and 0.99±0.02 eV, respectively. The absorption co-efficient of these films was found to be of the order of 105 cm−1.  相似文献   

16.
A series of titania thin films was prepared by chemical bath deposition (CBD) of TiCl3 on indium tin oxside (ITO) glass at room temperature, followed by calcinations at 500 °C for 4 h. The effect of cyclic deposition on phase composition, microstructure and electrical resistivity of TiO2 thin films was characterised using X-ray diffraction, scanning electron microscopy and four-point probe respectively. Results showed that TiO2 films produced by single deposition cycle were amorphous. In contrast, those produced by 5 and 6 deposition cycles were partly amorphous and partly crystalline with the formation of rutile. Both the film thickness and electrical resistivity increased with an increase in the number of deposition cycles.  相似文献   

17.
Spray pyrolysis of aqueous solutions that include copper(II) acetate, glucose, and 2-propanol was studied for the formation of cuprous oxide (Cu2O) thin films on glass substrates. The deposition conditions, based on the phase relations of the films, were investigated in terms of solution concentration and substrate temperature. Also, the formation process was kinetically discussed. The Cu2O thin film obtained here was composed of rounded grains ∼50 nm in size with a surface roughness of ∼30 nm. This film was reddish yellow and showed indirect and direct bandgap energies of 1.95 and 2.60 eV, respectively. Furthermore, the film exhibited p -type conduction, with a resistivity of ∼100 Omegacm.  相似文献   

18.
High quality epitaxial (La2/3Sr1/3)MnO3 (0 0 1) thin films were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrate at optimized growth parameters. The films quality was confirmed by both structural and physical properties characterization. Channeling Rutherford Backscattering Spectrometry characterization showed the minimal channeling coefficient as low as 4%. The LSMO thin films growth on SrTiO3 substrate follows the island growth model. The Curie temperature of LSMO films is around 360 K, which is the one of the highest reported in literature. The resistivity of LSMO films showed the metal-insulate transition temperature coincides with the Curie temperature. This high quality LSMO is suitable for room temperature magnetic devices application.  相似文献   

19.
ZnO and Ru multilayer thin films are deposited using the sputtering deposition technique at room temperature. The effects of the Ru interlayer thickness and annealing temperature on the properties of multilayer thin films have been studied. An X-ray diffraction study reveals that ZnO layers are highly c-axis-oriented. The use of an Ru interlayer improves the crystalline quality of the subsequently deposited ZnO layers. Moreover, the crystalline quality of the entire structure is further enhanced through thermal annealing in a vacuum. Atomic force microscopy images show that the surface roughness of the multilayer thin films increases with a Ru interlayer thickness greater than 6 nm. The roughness of the film surface increases in correlation with annealing temperatures. This accounts for the decreased optical transmittance of the multilayer thin films annealed at temperatures higher than 450 °C. The electrical resistivity of multilayer thin films decreases with an increase in the metallic interlayer thickness. Thermal annealing at 450 °C causes low resistivity in multilayer thin films. The lowest resistivity reached ~5.4 × 10?4 Ω cm for multilayer films with a 10-nm-thick Ru interlayer annealed at 450 °C.  相似文献   

20.
《Ceramics International》2023,49(15):25543-25548
Transparent conducting thin films have been widely used in lots of fields. The absence of high-performance hole-type transparent conducting thin films, however, seriously limits the wider applications. LaRhO3 as a type of perovskite material shows hole-type conduction with semiconductor-like properties and no investigations have been carried out about transparent conducting properties on LaRhO3 thin films. Here, LaRh1-xNixO3 (x = 0, 0.05, 0.1) thin films were firstly deposited by chemical solution deposition, showing epitaxial growth on single crystal SrTiO3 (001) substrates with the epitaxial relationship of LaRhO3(001)[110]||SrTiO3(001)[110]. With the doping of Ni element, the surface morphology became denser. Hall measurements confirmed that the hole concentration was enhanced with Ni doping, resulting in the decreased resistivity. Low resistivity of 17.3 mΩ cm at 300K was obtained for the LaRh0.9Ni0.1O3 thin films. The electrical transport mechanisms were investigated, showing thermal activation at high temperatures and variable range hopping model for the doped thin films at low temperatures. The transmittance within the visible range for all thin films was higher than 50%. The results will provide a feasible route to deposit hole-type transparent conducting LaRhO3-based thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号