首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xanthan gum was used as thickening agent to prepare whipped cream in this work. A dose-dependent effect was observed on the average particle size (d3,2) of whipped cream. At each xanthan gum level (0.025–0.125%) used, whipping time also showed a positive effect on the average particle size. With the increase of xanthan gum level or whipping time, the partial coalescence of fat in the whipped cream increased gradually. However, xanthan gum level showed no significant effect on the overrun of whipped cream. The textural characteristics of whipped cream were also investigated and the results indicated that a positive correlation was found between xanthan gum level and firmness, cohesiveness or viscosity of whipped cream. A different tendency was detected for consistency. The consistency of whipped cream increased with the increase of xanthan gum level to 0.100%, thereafter decreased.  相似文献   

2.
In this work, the effects of sorbitan monostearate (Span 60) level on the particle size distribution, microstructure and apparent viscosity of the emulsion were investigated. Average particle size (d4,3), surface protein concentration, partial coalescence of fat and overrun of whipped cream during whipping were also determined. As Span 60 level increased (0–0.8%) in emulsion, the apparent viscosity was increased gradually, and the particle size range was narrowed, which was also detected by microstructure. A positive effect of whipping time was observed on the average particle size, partial coalescence of fat, surface protein concentration and overrun during whipping, respectively. An increase of Span 60 level resulted in a reduction of d4,3 values and partial coalescence of fat during 0–1 min whipping, then increasing after whipping for 2–5 min (0.6% Span 60 as the critical level). A negative behaviour was observed between surface protein concentration and Span 60. Moreover, Span 60 could improve the overrun and organoleptic properties of whipped cream efficiently.  相似文献   

3.
This work aims at improving the textural and whipping properties of whipped cream by the addition of milk fat globule membrane protein. The determination of particle size distribution and average diameter of whipped cream showed that the small particle size was shifted to a larger range after milk fat globule membrane protein was added. The average particle size (d3,2) of whipped cream reached a maximum value of 5.05 µm at 1% milk fat globule membrane protein, while slowly decreased with increasing milk fat globule membrane protein levels from 2% to 5%. In addition, the partial coalescence of fat increased with the increase of milk fat globule membrane protein levels, and the correlation between the whipping time and the overrun of whipped cream was positive. The addition of milk fat globule membrane protein also altered the rheological behaviour of whipped cream, resulting in the increase of modulus G′ and the loss modulus G″. The results also indicated that higher milk fat globule membrane protein level decreased the serum loss of whipped cream while improved its stability. While milk fat globule membrane protein levels had no significant effect on viscosity, its increasing levels effectively improved the hardness, consistency, and viscosity of whipped cream.  相似文献   

4.
乳化剂用量对搅打稀奶油搅打性能和品质的影响机理研究   总被引:1,自引:1,他引:0  
研究了乳化剂用量对搅打稀奶油的乳浊液粒度分布、脂肪球部分聚结、液相蛋白浓度、感官品质和泡沫稳定性的影响。研究结果表明:乳浊液冷却及解冻后脂肪球粒径随乳化剂用量增加而减小,随着乳化剂用量增加,脂肪部分聚结速度和液相蛋白质浓度增加速度加快,搅打起泡率和感官品质以乳化剂用量为0.60%时最好,搅打稀奶油稳定时间随乳化剂用量增加呈先增加后下降趋势,当乳化剂用量为0.60%时,稳定时间达到最大2.4h。综合考虑,当乳化剂HLB值为7,乳化剂用量为0.60%时,搅打稀奶油搅打性能和品质最佳。  相似文献   

5.
研究了油脂用量对搅打稀奶油的粒度分布、脂肪部分聚结、液相蛋白质浓度、搅打起泡率、质构特性、感官品质和稳定时间的影响。研究表明:随着油脂用量增加,冷却后乳浊液脂肪球粒径增大;搅打过程中脂肪部分聚结速度和脂肪球粒径d4,3均随油脂用量增加而增大,且脂肪部分聚结率与脂肪球粒径d4,3有很好的相关性;液相蛋白质浓度和搅打起泡率降低;搅打稀奶油的质构特性值增加;稳定时间呈先增后减趋势,当油脂用量为23%时,搅打稀奶油的稳定时间最长达到2.7h;搅打稀奶油的感官品质以油脂用量为20%最好,综合考虑,油脂最佳用量范围是20%-23%。  相似文献   

6.
本研究以大豆油体为原料,探究了不同乳化剂(大豆皂苷、大豆卵磷脂、大豆多糖、吐温80)对大豆基搅打稀奶油的粒径分布、粘度、乳状液稳定性、搅打起泡率、泡沫稳定性的影响。结果表明,不同乳化剂对大豆基搅打奶油的乳状液特性和搅打特性有一定影响。添加吐温80的大豆基搅打稀奶油有较小的粒径分布,ζ-电位为-30.3 mV,粘度比加其他大豆乳化剂的小,而且搅打起泡性最高,达到112.4%,但是泡沫稳定性只有2.1%。添加大豆乳化剂的大豆基搅打稀奶油具有类似的乳状液特性,但是添加大豆卵磷脂的大豆基搅打稀奶油比其他两种大豆乳化剂具有更高的膨胀率(134.5%),而添加大豆多糖的大豆基搅打稀奶油具有更好的泡沫稳定性(1.2%)。  相似文献   

7.
Kirsty E. Allen  Brent Murray 《LWT》2006,39(3):225-234
Aeration properties of acidified casein-stabilized emulsions containing liquid oil droplets have been compared to the whipping of dairy cream. The foam systems were characterized in terms of overrun, microstructure, drainage stability, and rheology. With acidification using glucono-δ-lactone, the casein-stabilized emulsions could be aerated to give foams of far higher overrun (>600%) than whipped cream (∼120%). The development of foam volume, stability and rheology in the aerated casein-stabilized emulsion systems was found to be strongly dependent on the pH and the concentration of added calcium ions. Whereas whipped cream is stabilized by partially coalesced fat globules, the casein emulsion foams are stabilized by aggregation (gelation) of the protein coat surrounding the oil droplets. Casein emulsion foams formed at low pH were found to be more stable than whipped cream, whilst those formed at high pH were predominantly liquid-like and unstable. Instability arose in the acidified casein emulsion foams mainly through gel syneresis. We conclude that there are substantial textural differences between whipped cream and acidified casein emulsion foams, especially in terms of the small-deformation rheology and the extent of the linear viscoelastic regime.  相似文献   

8.
该文在黄油基搅打稀奶油经高压均质、热处理后分别使用1.0~5.0 MPa压力进行二段均质处理,并以未经二段均质处理的产品为对照,比较经不同二段均质压力处理后产品稳定性及搅打品质的变化。实验发现,对照产品脂肪球粒度分布出现明显双峰现象,乳液稳定性差,搅打时间为372.00 s,起泡率仅193.70%,并且在光学显微镜下观察到大量絮凝的脂肪球簇;当二段均质压力在1.0~ 3.0 MPa范围内增大,产品脂肪球平均粒径减小,产品稳定性增强,搅打时间缩短,打发率上升,絮凝的脂肪球簇的数量明显减少;当二段均质压力达到3.0 MPa,产品粒度分布趋于稳定,搅打时间仅需306.50 s,起泡率达235.10%,光学显微镜下未观察到明显絮凝现象。相比对照组,经3.0 MPa压力处理后的产品稳定性更好,搅打成型时间由372.00 s缩短至306.50 s,起泡率由193.70%提高至235.10%,实验结果表明,在搅打稀奶油生产中使用3.0 MPa压力进行二段均质可有效阻止乳液脂肪球絮凝,提高产品的稳定性及搅打品质,可满足工业生产高品质搅打稀奶油的要求。  相似文献   

9.
将单,双甘油脂肪酸酯与蔗糖酯按一定比例复配成不同亲水亲油平衡(hydrophile lipophilic balance,HLB)值的乳化剂,研究复配乳化剂HLB值对稀奶油脂肪聚结及结晶影响,并对其乳液性质及打发性质进行表征。结果表明,随着复配乳化剂HLB值的增大,乳液粒径增大且表观黏度升高进而使搅打时间延长;热力学及Avrami等温结晶动力学结果表明,复配乳化剂HLB值为10时,高熔点乳脂熔融温度改善显著,并且结晶速率最快;HLB值为8~10时打发性较好,乳清泄漏率较低,涂抹性较佳。因此,复配乳化剂HLB值应控制在8~10,此时更适用于高品质裱花稀奶油的工业生产。  相似文献   

10.
脂肪球在搅打乳状液中的部分聚结及其作用   总被引:5,自引:0,他引:5  
综述了脂肪球在搅打乳状液中的部分聚结现象和搅打条件、脂肪种类、脂肪球吸附膜对部分聚结的影响。以冰淇淋和搅打奶油为例 ,说明脂肪球的部分聚结对于搅打乳状液最终形成充气的泡沫结构起关键作用 ,控制脂肪球的部分聚结程度对于改善搅打乳制品的质量、性能具有重要意义。联系控制脂肪球的部分聚结在冰淇淋生产中的实际应用 ,介绍了近来国际上有关脂肪球部分聚结的研究进展。  相似文献   

11.
Whipped emulsions were prepared at pilot scale from fresh milk, whole egg, and other ingredients, for example, sugars and stabilizers (starch, polysaccharides). Egg content was varied: 4 recipes were studied differing in their egg to milk protein ratio (0, 0.25, 0.38, and 0.68). Protein and fat contents were kept constant by adjusting the recipes with skim-milk powder and fresh cream. Emulsions were prepared by high-pressure homogenization and whipped on a pilot plant. Particle-size distribution determined by laser-light scattering showed an extensive aggregation of fat globules in both mix and whipped emulsions, regardless of recipe. Amount of protein adsorbed at the oil-water interface and protein composition of adsorbed layer were determined after isolation of fat globules. Protein load is strongly increased by the presence of egg in formula. Values obtained for the whipped emulsions were dramatically lower than those obtained for the mix by a factor of 2 to 3. Sodium dodecyl sulfate-PAGE indicated a preferential adsorption of egg proteins over milk proteins at the oil-water interface, regardless of recipe. This phenomenon was more marked in aerated than in unaerated emulsions, showing evidence for desorption of some milk proteins during whipping. Egg proteins stabilize mainly the fat globule surface and ensure emulsion stability before whipping. Air bubble size distribution in whipped emulsions was measured after 15 d storage. When the egg to milk protein ratio is decreased to 0.25, large air cells appear in whipped emulsions during storage, indicating mousse destabilization. The present work allows linking the protein composition of adsorbed layers at the fat globule surface to mousse formula and mousse stability.  相似文献   

12.
The influence on their whipping properties of homogenization at first and second stage pressures of 3.5/1.5 MPa and addition of whey protein concentrate (WPC) powder at three different (0.7, 1.4, and 2.1 wt percentage) concentrations to sweetened and homogenized creams was studied. Homogenization of cream significantly decreased maximum overrun and made the foam microstructure less open, while increasing whipping time, cream and foam lightness (Hunter L -value) and apparent viscosity. It also resulted in a less elastic foam structure with an increased drainage. Addition of WPC decreased the amount of maximum overrun, foam drainage and its lightness in parallel with developing a more compact microstructure. It increased the whipping time, apparent viscosity of unwhipped creams and foams, and resulted in a less elastic foam structure. The apparent viscosity of whipped cream with 2.1 wt percentage WPC, however, was lower than that of whipped cream with 1.4 wt percentage WPC, due most probably to the start up of gel formation at 2.1% WPC concentration in sweetened cream when it was sheared. Fresh foam whipped from sweetened cream with 2.1 wt percentage WPC also tended to have a slightly but not statistically significant lower elastic modulus (G') than fresh foam whipped from sweetened cream with 1.4 wt percentage WPC. This concentration can be considered as the critical value for gel formation in sweetened creams enriched by whey proteins when sheared. This study indicated the potential of WPC powder for reducing foam drainage from whipped homogenized sweetened cream.  相似文献   

13.
The effects of whipping temperature (5 to 15°C) on the whipping (whipping time and overrun) and rheological properties of whipped cream were studied. Fat globule aggregation (aggregation ratio of fat globules and serum viscosity) and air bubble factors (overrun, diameter, and surface area) were measured to investigate the mechanism of whipping. Whipping time, overrun, and bubble diameters decreased with increasing temperature, with the exception of bubble size at 15°C. The aggregation ratio of fat globules tended to increase with increasing temperature. Changes in hardness and bubble size during storage were relatively small at higher temperatures (12.5 and 15°C). Changes in overrun during storage were relatively small in the middle temperature range (7.5 to 12.5°C). From the results, the temperature range of 7.5 to 12.5°C is recommended for making whipped creams with a good texture, and a specific temperature should be decided when taking into account the preferred overrun. The correlation between the whipped cream strain hardness and serum viscosity was high (R2 = 0.906) and persisted throughout the temperature range tested (5 to 15°C). A similar result was obtained at a different whipping speed (140 rpm). The multiple regression analysis in the range of 5 to 12.5°C indicated a high correlation (R2 = 0.946) in which a dependent variable was the storage modulus of whipped cream and independent variables were bubble surface area and serum viscosity. Therefore, fat aggregation and air bubble properties are important factors in the development of cream hardness. The results of this study suggest that whipping temperature influences fat globule aggregation and the properties of air bubbles in whipped cream, which alters its rheological properties.  相似文献   

14.
This study investigates the effect of applying a time–temperature profile to natural and recombined cream to influence partial coalescence and, consequently, the whipping quality. To date, no clear relationship exists between the consequences of tempering on a microstructural level, partial coalescence, and whipping properties. Milk fat crystallisation was analysed using differential scanning calorimetry and the internal arrangement of fat crystals was visualised with cryo-scanning electron microscopy. Shear-induced partial coalescence and whipping properties were studied. Shear-induced partial coalescence was promoted, attributed to the observed changes in the fat crystal network. The effects on whipping properties were different for natural and recombined cream and thus dependent upon the interfacial composition. Consolidation of the partially coalesced fat droplet network by tempering increased the stability of whipped recombined cream during cold storage. Tempering is a promising tool to alter the susceptibility to partial coalescence by changing the internal fat crystal network, and influencing whippability.  相似文献   

15.
瓜尔豆胶对搅打稀奶油的搅打性能的影响   总被引:1,自引:1,他引:1  
研究了不同浓度的瓜尔豆胶对搅打稀奶油乳状液的表观黏度、脂肪球粒度、脂肪球界面蛋白浓度、脂肪球部分聚结率、泡沫硬度和搅打起泡率的影响。结果表明,瓜尔豆胶对搅打稀奶油乳状液的表观黏度影响非常显著;瓜尔豆胶浓度过高或过低,都会使得解冻后的乳状液粒径变大;瓜尔豆胶的质量分数越高,脂肪球部分聚结速度越快,泡沫硬度也越大;搅打起泡率随着瓜尔豆胶质量分数增大而降低。  相似文献   

16.
以无盐黄油和脱脂乳为原料制备黄油基搅打稀奶油,采用二次均质工艺,研究了一次均质压力(二次均质压力不变)对黄油基搅打稀奶油的粒径、脂肪部分聚结率、流变学特性、搅打性能的影响,分析了各评价指标之间的相关性。结果表明,黄油基搅打稀奶油的一次均质压力在10.0~15.0 MPa时,随着均质压力的增大,脂肪球粒径D4,3由1.85 μm逐渐减小到1.57 μm,且在15.0 MPa时脂肪球粒径D4,3达到最小为1.57 μm;黄油基搅打稀奶油的脂肪部分聚结率随着一次均质压力的增大逐渐增大,由13.74%增大到17.53%;搅打时间随着均质压力的增大逐渐由314 s减小到265 s且一次均质压力在15.0 MPa时搅打时间最少为265 s;泡沫稳定性由78.09%逐渐增加到87.26%,且泡沫稳定性在15.0 MPa时泡沫稳定性达到最大87.26%。因此将黄油基搅打稀奶油的一次均质压力控制在10.0~15.0 MPa范围内较适宜。  相似文献   

17.
研究了大豆蛋白与酪蛋白不同配比对搅打稀奶油乳浊液的表观粘度及搅打过程中的液相蛋白浓度、脂肪部分聚结、搅打起泡率的变化和泡沫稳定性的影响,并在此基础上探讨了其作用机理。结果表明:大豆蛋白比例的增大能增加界面膜的粘弹性,抑制脂肪球的部分聚结,提高泡沫结构的稳定性,当大豆蛋白与酪蛋白比例为4∶1时,搅打稀奶油可以获得最佳的稳定性。  相似文献   

18.
李扬  李妍  李栋  王诗然  张列兵 《食品科学》2022,43(15):327-335
搅打稀奶油是一类可搅打起泡的水包油乳液。作为重要的食品工业原料,搅打稀奶油可作为呈味物质赋予食品良好的感官特性,应用前景广阔。本文首先介绍搅打稀奶油贮藏期内常见的失稳作用,包括乳析、聚集、聚结、部分聚结及奥氏熟化,并阐述界面特性及脂肪球间的交互作如何影响搅打稀奶油的稳定性;其次介绍搅打稀奶油的搅打过程,阐述结晶特性、界面特性和液相蛋白特性如何影响搅打特性。本文可为搅打稀奶油产品的工业化生产提供一定的理论指导。  相似文献   

19.
Water-in-oil-in-water (W/O/W) double emulsions present a reduced-fat alternative to conventional O/W food emulsions, as part of the dispersed oil phase is replaced with water. In this study, the concept of a reduced-fat whipped topping produced by W/O/W technology was proven. Whipping of a W/O/W emulsion, containing only 20% oil phase and a solid fat content of 78%, produced a superior whipped topping, in terms of firmness and overrun, compared to its whipped O/W emulsion counterparts. The presence of PGPR in the oil phase increased structure formation during whipping, while the additional dispersed-phase volume resulted in a better air inclusion. Two commercial monoacylglycerols (saturated and unsaturated) were investigated to improve the whipping properties of the produced W/O/W double emulsion. Both increased the susceptibility towards partial coalescence, thereby reducing whipping time and overrun, while increasing firmness of the produced whipped topping. Furthermore, the effect was stronger for the unsaturated than for the saturated monoacylglycerol.  相似文献   

20.
本文以麦芽糊精和复配糖(葡萄糖、白砂糖和淀粉糖浆组成)为原料制备总糖浓度为18.60 wt%的降糖植脂奶油,研究了麦芽糊精与复配糖不同的比例(0:20~9:11)对降糖植脂奶油搅打性能和品质的影响。比较了植脂奶油的水分分布、界面蛋白浓度、脂肪部分聚结率、最佳搅打时间、搅打起泡率、硬度、感官评价、储藏稳定性等指标。研究发现,当麦芽糊精与复配糖比例从0:20增加至3:17,植脂奶油的界面蛋白浓度和硬度明显增加,储藏稳定性提高,感官评价稍有降低;进一步增加麦芽糊精与复配糖比例至9:11时,植脂奶油的脂肪部分聚结率、搅打起泡率、感官评价和储藏稳定性明显降低,搅打性能和品质均较差。综合考虑搅打性能和品质的影响,当麦芽糊精与复配糖的比例分别在3:17和5:15时,降糖植脂奶油的搅打起泡率为353.3%和342.2%,硬度为325.6 g和329.1 g,横截面光滑,此时搅打性能和品质更佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号