首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
花生蛋白改性研究   总被引:2,自引:0,他引:2  
植物蛋白改性是拓宽植物蛋白应用范围的关键。综述了植物蛋白改性的机理及其方法,介绍了花生蛋白改性的研究进展以及发展花生蛋白改性技术对我国的特殊意义。  相似文献   

2.
《粮食与油脂》2017,(9):13-17
花生蛋白是重要的植物蛋白资源。改性技术能有效改善花生蛋白某些功能特性,进而促进花生蛋白的应用推广。简述了花生蛋白的分子结构特点和功能特性。结合花生蛋白改性的应用背景,介绍了改性方法的分类、改性机理及其应用。并通过对花生蛋白改性方法研究进展的总结概括,对应用前景进行展望。  相似文献   

3.
花生蛋白改性的研究进展   总被引:1,自引:1,他引:1  
花生是一种重要的油料蛋白资源,天然花生蛋白由于某些功能特性的限制而影响了其在食品加工中的应用.花生蛋白改性是当前植物蛋白深加工领域的研究热点,是拓宽花生蛋白应用的关键.本文简单介绍了花生蛋白的营养和功能特性,并概述了花生蛋白改性的分类及目前国内外花生蛋白改性研究的进展,重点综述了花生蛋白的酶解改性及改性蛋白食品的研究进展,并展望了花生蛋白深加工产品及酶解改性制备活性肽的技术发展.探索花生蛋白改性技术及其功能特性,对于开辟花生新的利用途径,提高其使用价值,具有重要的实际意义.  相似文献   

4.
采用响应面优化法对花生分离蛋白进行磷酸化改性,以氮溶解指数(NSI)为指标得出花生分离蛋白磷酸化改性的最佳条件为三聚磷酸钠添加量7.77%、花生分离蛋白质量分数6.38%、反应温度44.85℃、反应体系pH8.24、反应时间5.68h。得到的花生改性蛋白NSI 最大值为77.74%。改性后,花生分离蛋白的吸油性、吸水性、持水性、乳化性、乳化稳定性、泡沫稳定性都有不同程度的提高。  相似文献   

5.
花生是一年生草本植物,起源于南美洲热带、亚热带地区,是世界上主要的食用植物油料作物之一,在全国大部分地区都有种植。作为花生榨油之后的主要副产物,花生饼粕中约含有50%的蛋白质,丰富的花生资源为花生蛋白的研究与开发利用提供了充足的原料,由此也有力地推动了花生蛋白产品的迅速发展。花生蛋白不仅所含氨基酸种类比较齐全,而且所含人体必需氨基酸的比例较高,是植物蛋白中为数不多能替代动物蛋白的理想营养佳品,通过蛋白质改性技术可以修饰蛋白质的功能特性,提高其加工性能,拓宽花生蛋白在各领域中的应用范围。本文从物理改性、化学改性、酶法改性3个方面探讨花生蛋白改性技术对其功能特性所产生的影响,物理方法主要包括超高压均质、热处理、超声处理、低温等离子体、臭氧、反胶束和冻融循环等;化学方法包括糖基化、酰化、磷酸化、pH偏移处理和多酚化合物处理等;生物方法主要包括酶法水解和酶法交联处理两种。此外,本文总结了不同改性方法的作用机制及其对花生蛋白性质的影响,同时展望了花生蛋白改性技术的应用及发展趋势,旨在为花生蛋白的开发利用和未来发展奠定基础。  相似文献   

6.
以花生蛋白为原料,研究了微波改性作用对其作为啤酒瓶标签胶粘剂性能的影响.以花生蛋白与水质量配比、改性温度、改性时间以及微波功率为影响因素,以黏度、粘结强度和抗水性为评价指标,利用正交实验确定出最佳改性工艺条件为:改性时间50 min,改性温度80℃,微波功率600W,蛋白与水质量配比1∶4.  相似文献   

7.
为了提高花生蛋白的溶解性,使用热处理、微波处理、高速搅拌和超声波处理进行增溶改性。结果表明,复合使用高速搅拌和超声波处理对于花生蛋白溶解性的提高更为有效。通过单因素实验和正交实验,得出高速搅拌的最优工艺为:转速22 000 r/min,搅拌时间66 s,料液比1∶7;超声波处理的最优工艺为:超声功率210 W,超声时间420 s,料液比1∶10。在各自的最优工艺条件下,先高速搅拌后超声波处理改性可以使花生蛋白的氮溶指数提高至78.2%。  相似文献   

8.
花生浓缩蛋白的微波改性研究   总被引:3,自引:0,他引:3  
在单因素试验的基础上,采用L9(34))正交试验,研究pH值、料液比、微波功率及改性时间对花生浓缩蛋白氮溶解指数(NSI)的影响。通过正交试验确定的最佳工艺条件为:花生浓缩蛋白料液比(w/v)1∶12、微波功率480W、改性时间60s和pH值9,改性花生浓缩蛋白NSI为53.26%。  相似文献   

9.
醇法花生浓缩蛋白改性工艺研究   总被引:1,自引:0,他引:1  
对醇法花生浓缩蛋白产品进行物理改性,探讨了热水温度、溶液pH、超声波处理时间对产品功能特性的影响.通过正交实验得出优化的改性工艺条件为:将醇法花生浓缩蛋白加入100℃热水中溶解,固液比1:9,调pH为9,超声波功率300 W,频率25 kHz,超声波处理时间30 min.改性产品的蛋白含量为65.86%(N×6.25,干基),氮溶解指数(NSI)为64.68%.  相似文献   

10.
高静压处理对花生蛋白的改性研究   总被引:1,自引:0,他引:1  
研究高静压(300 MPa~600 MPa)处理对花生分离蛋白、花生球蛋白的溶解性、乳化性(EAI)、乳化稳定性(ESI)、表面疏水性、巯基含量等性质的影响,并对各功能性质的相互关联性进行了分析。结果表明:高静压处理可有效的改善花生分离蛋白和花生球蛋白的溶解性和乳化性,但是会降低其乳化稳定性。在400 MPa,花生分离蛋白具有最大的乳化性和表面疏水性,花生球蛋白具有最大的溶解性。在500 MPa,花生球蛋白具有最大的乳化性和表面疏水性,花生分离蛋白具有最大的溶解性;随着压力的升高,花生球蛋白和花生分离蛋白的游离巯基含量呈下降趋势。表面疏水性与乳化性存在一定的正相关。结果表明,高静压处理可以有效改善花生蛋白的功能性质。  相似文献   

11.
花生浓缩蛋白的制备是以低变性花生蛋白粉为原料,通过二次乙醇浸提的方法制得花生浓缩蛋白。用胰蛋白酶对所得花生浓缩蛋白进行改性,通过正交试验得到最佳的改性条件为:料液比1∶11,酶与底物的比例(E∶S)为0.2%,酶解温度35℃,酶解时间30 m in,在此条件下,花生浓缩蛋白的吸油性较未改性前提高了79.6%。  相似文献   

12.
花生蛋白研究进展   总被引:6,自引:1,他引:6  
该文从花生蛋白组成、功能特性、提取方法及开发利用等方面对花生蛋白国内外研究最新进展进行综述,并提出花生蛋白提取方法改进和功能性质改善将成为今后研究重点。  相似文献   

13.
花生蛋白膜是一种以花生分离蛋白为原料的天然高分子材料,具有可食用、可降解、可再生、原料价格低廉等优点。对可食性花生蛋白膜的制备(湿法、干法)、蛋白膜性能(机械性能、热性质和耐水性)、花生蛋白改性(物理、化学、酶法)对蛋白膜性能的影响、蛋白膜结构(化学键、微观表面结构)以及应用进行综述,同时指出目前该研究领域中存在的问题,并对未来的研究重点进行展望,为可食性花生蛋白膜的进一步开发利用提供参考。  相似文献   

14.
花生蛋白是营养价值高、资源丰富的植物蛋白,具有广泛的应用前景。为推进花生蛋白的应用研究,对花生蛋白提取方法、花生蛋白改性方法和花生功能性肽的研究进展进行了概述,并指出急需解决的问题。  相似文献   

15.
以乳化性能为指标,采用胰蛋白酶-超高压微射流对花生蛋白复合改性,并以复合改性花生蛋白为主要壁材和乳化剂制备微胶囊粉末油脂。结果表明:复合改性可改善花生蛋白的乳化性能,花生蛋白经胰蛋白酶酶解后,在微射流均质压力100 MPa、均质1次的条件下,其乳化性能最佳;微胶囊粉末油脂复原乳状液粒径分布集中,平均粒径346.8 nm,在放置24 h内较稳定;微胶囊粉末油脂在实验时间内,表面油含量、酸值(KOH)和过氧化值分别控制在8%、3 mg/g和8 meq/kg内。  相似文献   

16.
目的研究超声波辅助花生浓缩蛋白糖基化改性工艺。方法以低温冷榨花生蛋白粉为原料,以糖基化改性蛋白的乳化活性指数(emulsifying activity index,EAI)和乳化稳定性指数(emulsifying stability index,ESI)为考察指标,采用单因素和响应面实验优化工艺条件。结果超声波辅助花生浓缩蛋白糖基化改性的最优工艺参数为蛋白浓度5.0 mg/mL、糖浓度104 mg/mL、pH值8.5、反应温度57℃、反应时间43 min、超声波功率210 W、超声波频率45 kHz;此工艺条件下的EAI和ESI理论值分别为47.40 m2/g和69.13%,验证实验值分别为(48.61±0.32) m~2/g和(67.59±2.08)%;EAI和ESI值的实验值与理论值相差分别为2.55%和2.23%。在pH 2~12范围内,糖基化改性花生浓缩蛋白的乳化活性高于未改性蛋白。结论本研究的响应面模型与实际情况拟合较好,验证了所预测模型的正确性,为花生浓缩蛋白糖基化改性的制备和应用提供理论基础。  相似文献   

17.
花生蛋白及其功能性研究进展   总被引:3,自引:0,他引:3  
对花生蛋白及其制品的制备方法、功能性质进行了系统分析和比较,并对花生蛋白物理、化学、酶法改性研究进行了论述。花生蛋白及其制品的各种制备方法中仍存在花生蛋白残油量高且功能性较差等问题;对花生蛋白改性方法单一,其功能性改善有限。通过物理-化学修饰和酶法聚合-降解改性等技术的集成,研究专用功能性花生蛋白将是今后花生蛋白的研发重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号