首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An active site model of 5 alpha-reductase type 2 isoenzyme on an "active-analog approach" and based on 4-azasteroidal inhibitors has been constructed to evaluate the effects on the inhibitory potency of substituents on the steroid A ring. This model has proven able to predict the potential inhibitory activity of 19-nor-10-azasteroid and 6-azasteroid compounds. A model for the evaluation of clinical efficacy of an inhibitor, based on in vitro data, has also been developed and applied to finasteride. This inhibitory potency evaluation of finasteride in human scalp homogenates, plus pharmacokinetic data, allows the calculation of a theoretical in situ inhibition value for human scalp. From the IC50 curve of finasteride in scalp homogenates, it is possible to calculate that for an inhibition level similar to that obtained in prostate with 5 mg of finasteride, the necessary plasma concentration of the drug is 1 microM, a level obtained after the acute administration of 50 mg of finasteride.  相似文献   

2.
A novel series of indole and benzimidazole derivatives were synthesized and evaluated for their inhibitory activity of rat prostatic 5alpha-reductase. Among these compounds, 4-?2-[1-(4,4'-dipropylbenzhydryl)indole-5-carboxamido]phenoxy?buty ric acid (15) and its benzimidazole analogue 25 showed potent inhibitory activities for rat prostatic 5alpha-reductase (IC50 values of 9.6+/-1.0 and 13+/-1.5 nM, respectively), with the potency very close to that of finasteride. Compound 30, in which the moiety between the benzene ring and amide bond was replaced by quinolin-4-one ring, showed almost equipotent activity (IC50= 19+/-6.2nM) with the correspondent amide derivative 13. This result was consistent with the previous observation that the coplanarity of this moiety might contribute to the potent inhibitory activity.  相似文献   

3.
The enantiomers of the potent nonsteroidal inhibitor of aromatase fadrozole hydrochloride 3 have been separated and their absolute configuration determined by X-ray crystallography. On the basis of a molecular modeling comparison of the active enantiomer 4 and one of the most potent steroidal inhibitors reported to date, (19R)-10-thiiranylestr-4-ene-3,17-dione, 7, a model describing the relative binding modes of the azole-type and steroidal inhibitors of aromatase at the active site of the enzyme is proposed. It is suggested that the cyanophenyl moiety present in the most active azole inhibitors partially mimics the steroid backbone of the natural substrate for aromatase, androst-4-ene-3,17-dione, 1. The synthesis and biological testing of novel analogues of 3 used to define the accessible and nonaccessible volumes to ligands in the model of the active site of aromatase are reported.  相似文献   

4.
Turosteride was tested in a series of studies for its effect on 5 alpha-reductase and for its possible influence on other steroidogenic enzymes and on steroid receptors. The compound was found to inhibit human and rat prostatic 5 alpha-reductases with IC50 values of 55 and 53 nM, respectively, whereas it caused a less marked inhibition of the dog enzyme (IC50 2.2 microM). Turosteride showed no relevant effect on rat adrenal C20,22-desmolase (IC50 254 microM) and human placental aromatase (IC50 > 100 microM), and only at relatively high concentrations it caused inhibition of human placental 5-ene-3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) (IC50 2.5 microM). Turosteride was found to be a selective 5 alpha-reductase inhibitor showing no noteworthy binding to receptors for androgens (relative binding affinity, RBA, 0.004%), estrogens (< or = 0.005%), progesterone (< 0.005%), glucocorticoids (< 0.01%) and mineralocorticoids (< 0.03%). Its biochemical profile was similar to that of finasteride, whereas 4-MA (17 beta-N,N-diethyl-carbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one) was confirmed to be a non-selective 5 alpha-reductase inhibitor, showing a degree of binding affinity to the androgen receptor (RBA 0.1%) and a marked inhibition of 3 beta-HSD-I (IC50 32 nM). When given orally in immature castrated rats together with subcutaneous testosterone propionate (TP) for 7 consecutive days, turosteride reduced the ventral prostate and seminal vesicle growth promoting effect of TP, with IC50 values of approximately 5 and 6.7 mg/kg/day, whereas levator ani weight was unchanged. In comparison, 4-MA was approx. 3-fold less potent than turosteride in reducing the prostate and seminal vesicle weights and caused a marked reduction of levator ani weight, thus showing its unselectivity.  相似文献   

5.
Some epimeric 20-hydroxy, 20-oxime, 16 alpha, 17 alpha-, 17,20- and 20,21-aziridine derivatives of progesterone were synthesized and evaluated as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase (P450(17) alpha) and 5 alpha-reductase (5 alpha-R). The reduction of 16-dehydropregenolone acetate (3a) was reinvestigated. NaBH4 in the presence of CeCl3 gave better stereo-selectivity for 20 beta-ol [20 alpha/20 beta-OH (4 alpha/4 beta) = 1/2.7] than LTBAH or the Meerwein-Pondroff method reported; reduction with Zn in HOAc formed exclusively 20 alpha-ol (4 alpha b). The 20 alpha- and 20 beta-hydroxy-4,16-pregnadien-3-one (9 alpha) and (9 beta) were synthesized from the alcohols 4 alpha b and 4 beta b. Several 20-oxime pregnadienes and 16 alpha, 17 alpha-, 17,20- and 20,21-aziridinyl-5-pregnene derivatives were also synthesized. LiAlH4 reduction of the 16-en-20-oxime (12b) yielded 20 (R)-(13a) and 20(S)-17 alpha,20-aziridine (13b) and 20(R)-17 beta,20-aziridine (14a). Several compounds inhibited the human P450(17) alpha with greater potency than ketoconzole. The 5 alpha-R enzyme assay showed that while (9 alpha) did not have any activity, (9 beta) and (3b) were potent 5 alpha-reductase (IC50 = 21 and 31 nM) inhibitors with activities similar to finasteride. The 20-oximes (17a) and (17b) were potent dual inhibitors for both 5 alpha-R (IC50 = 63 and 115 nM, compared to 33 nM for finasteride) and P450(17) alpha (IC50 = 43 and 25 nM, compared to 78 nM for ketoconazole).  相似文献   

6.
PNU 157706 is a novel dual inhibitor of 5alpha-reductase (5alpha-R), the enzyme responsible for the conversion of testosterone (T) to 5alpha-dihydrotestosterone (DHT). Tested on a crude preparation of human or rat prostatic 5alpha-R, PNU 157706 caused enzyme inhibition with IC50 values of 20 and 34 nM, respectively, compared to the values of 32 and 58 nM shown by finasteride. Furthermore, PNU 157706 was highly potent in inhibiting human recombinant 5alpha-R type I and II isozymes, showing IC50 values of 3.9 and 1.8 nM and, therefore, it was several folds more potent than finasteride (IC50 values of 313 and 11.3 nM), particularly on the type I isozyme. PNU 157706 was shown to have no binding affinity for the rat prostate androgen receptor (RBA 0.009% that of DHT). In adult male rats, a single oral dose of 10 mg/kg of PNU 157706 caused a marked and longer lasting reduction of prostatic DHT than did finasteride (at 24 h inhibition by 89 and 47%, respectively). In prepubertal, T- or DHT-implanted castrated rats, PNU 157706, given orally for 7 days at the dose of 10 mg/kg/day, markedly reduced ventral prostate weight in T- but not in DHT-implanted animals, thus showing to be devoid of any anti-androgen activity. In adult rats treated orally for 28 days, PNU 157706 resulted markedly more potent (16-fold) than finasteride in reducing prostate weight, the ED50 values being 0.12 and 1.9 mg/kg/day, respectively. These results indicate that PNU 157706 is a promising, potent inhibitor of both type II and I human 5alpha-R with a very marked antiprostatic effect in the rat.  相似文献   

7.
The effect of the C-3 substituent on the reaction of androst-5-enes with mercury(II) trifluoroacetate in dichloromethane (modified Treibs oxidation) was investigated. 3 beta-Acyloxyandrost-5-en-17-ones gave 3 beta-acyloxy-6 beta-hydroxyandrost-4-en-17-ones accompanied by 3 beta-acyloxy-6-chloromercuriandrost-5-en-17-ones. 3 beta-Acetoxy-6 beta-trifluoroacetoxyandrost-4-en-17-one and 3 beta-acetoxy-4 beta-trifluoroacetoxyandrost-5-en-17-one were revealed to be intermediates in the reaction. The formation of the chloromercury steroids indicated participation in the reaction by the solvent. With 3 alpha-acetoxyandrost-5-en-17-one as substrate, a complete reversal in the product distribution was observed. 3 beta-Haloandrost-5-en-17-ones gave mainly products that reflected SN1 substitution of the halide. 3 beta-Hydroxy- and 3 beta-trifluoroacetoxyandrost-5-en-17-ones were formed. 3 beta-Methoxyandrost-5-en-17-one afforded in nearly identical yields androst-4-ene-3,17-dione, 3 beta-methoxy-6 beta-hydroxyandrost-4-en-17-one, 3 beta-methoxy-6-chloromercuriandrost-5-en-17-one and 6 beta-hydroxyandrost-4-ene-3,17-dione while androst-5-en-17-one yielded 3 beta,6 beta-dihydroxyandrost-4-en-17-one, androst-5-ene-7,17-dione and androst-4-ene-3,17-dione. The effects of solvent and other mercury salts on the reaction were also studied. Treibs oxidation was successful in chloroform, carbon tetrachloride, and dibromomethane, but not in other solvents tested. 3 beta-Acetoxy-6-bromomercuriandrost-5-en-17-one was obtained in dibromomethane. Replacement of the reagent by mercury(II) trichloroacetate altered the intermediates formed but not the products. Mercury(II) tribromoacetate was unreactive, however.  相似文献   

8.
Aromatase is a cytochrome P450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione to estrone through three sequential oxygenations of the 19-methyl group. Androst-4-ene-3,6,17-trione (1) is a suicide substrate of aromatase. The inactivation mechanism for steroid 1 has been studied to show that the inactivation reaction proceeds through the 19-oxo intermediate 3. To further clarify the mechanism, 4 beta, 5 beta-epoxyandrosta-3,6,17,19-tetraone (6) was synthesized as a candidate for a reactive electrophile involved in irreversible binding to the active site of aromatase, upon treatment of compound 3 with hydrogen peroxide in the presence of NaHCO3. The epoxide 6 inhibited human placental aromatase in a competitive manner (Ki = 30 microM); moreover, it inactivated the enzyme in an active-site-directed manner in the absence of NADPH (K1 = 88 microM, kinact = 0.071 min-1). NADPH and BSA both stimulated the inactivation rate without a significant change of the K1 in either case (kinact: 0.133 or 0.091 min-1, in the presence of NADPH or BSA, respectively). The substrate androst-4-ene-3,17-dione protected the inactivation, but a nucleophile, L-cysteine, did not. When both the epoxide 6 and its 19-methyl analog 4 were subjected separately to reaction with N-acetyl-L-cysteine in the presence of NaHCO3, the 19-oxo steroid 6 disappeared from the reaction mixture more rapidly (T1/2 = 40 sec) than the 19-methyl analog 4 (T1/2 = 3.0 min). The results clearly indicate that the 4 beta, 5 beta-epoxy-19-oxo compound 6, which is possibly produced from 19-oxo-4-ene steroid 3 through the 19-hydroxy-19-hydroperoxide intermediate, is a reactive electrophile that irreversibly binds to the active site of aromatase.  相似文献   

9.
We devised a method to screen for microorganisms capable of growing on bile acids in the presence of organic solvents and producing organic solvent-soluble derivatives. Pseudomonas putida biovar A strain ST-491 isolated in this study produced decarboxylated derivatives from the bile acids. Strain ST-491 grown on 0.5% lithocholic acid catabolized approximately 30% of the substrate as a carbon source, and transiently accumulated in the medium androsta-1,4-diene-3,17-dione in an amount of corresponding to 5% of the substrate added. When 20% (v/v) diphenyl ether was added to the medium, 60% of the substrate was converted to 17-keto steroids (androst-4-ene-3,17-dione-like steroid, androsta-1,4-diene-3,17-dione) or a 22-aldehyde steroid (pregna-1,4-dien-3-on-20-al). Amounts of the products were responsible for 45, 10, and 5% of the substrate, respectively. In the presence of the surfactant Triton X-100 instead of diphenyl ether, 40% of the substrate was converted exclusively to androsta-1,4-diene-3,17-dione.  相似文献   

10.
In order to mimic the human situation in which adrenal steroid precursors are converted to the active androgen dihydrotestosterone (DHT) in prostatic tissue, we have used castrated rats supplemented with the precursor steroid androstenedione (delta 4-dione) released from Silastic implants. While it is well known that the action of DHT can be partially neutralized by antiandrogens which compete for binding to the androgen receptor, we have used 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one (4-MA), an inhibitor of 5 alpha-reductase, the enzyme which converts testosterone into DHT, in order to decrease intraprostatic DHT levels and thus facilitate the action of the antiandrogen. Animals were treated for 7 days with Flutamide (FLU, 2 mg) or 4-MA (4 mg) injected subcutaneously, twice daily, alone or in combination. 4-MA administered alone caused a 54% inhibition of delta 4-dione-stimulated ventral prostate weight while FLU exerted a 74% inhibitory effect and 4-MA+FLU further improved inhibition to 81%. We then measured, by in situ hybridization, the levels of prostatic mRNAs encoding the C1 and C3 components of the prostatic binding protein (PBP) which are highly specific and sensitive markers of androgen action. PBP-C3 mRNA levels fell by 95% following castration while treatment with delta 4-dione completely reversed the effect of castration. Administration of FLU or 4-MA independently caused 33% and 10% decreases, respectively, of PBP-C3 mRNA levels stimulated by delta 4-dione while the combination of both compounds further inhibited PBP-C3 mRNA levels to reach a 55% inhibition. Similar effects were observed on PBP-C1 mRNA levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Due to the varied reactions leading to the 3-oxo group in steroids and the reactivity of its environment, a large number of impurities related to this group are formed during the reaction steps and the degradation studies. In this paper the experiences from the authors laboratory with the 3-oxo-related impurities in 19-nor-4-ene-3-oxosteroids (norgestrel, norethisterone, nandrolone, its esters and Nestorone) as well as corticosteroids (prednisolone, mazipredone, etc) are presented. The impurities include saturated 3-ones, 1-ene-3-ones, 5(10)-ene-3-ones, 3-deoxo and 3-ethinyl-3,5-diene derivatives, 6-ene, 8(14)-ene, 6,8(14)-diene, 6-hydroxy (alpha and beta), 10beta-hydroxy and 6-one derivatives in 4-ene-3-oxosteroids and 8(9)-ene, 9(11)-ene, 11alpha-hydroxy, 11-oxo and 4-ene-3-one derivatives in 11beta-hydroxy-1,4-diene-3-oxosteroids. The chromatographic, spectroscopic and hyphenated techniques used in this study include TLC, GC, HPLC with diode array UV detector, GC-MS, LC-MS and NMR methods.  相似文献   

12.
Several 7 alpha-thiosubstituted derivatives of androstenedione have demonstrated effective inhibition of aromatase, the cytochrome P450 enzyme complex responsible for the biosynthesis of estrogens. Introduction of an additional double bond in the A ring resulted in 7 alpha-(4'-amino)phenylthioandrosta-1,4-diene-3,17-dione (7 alpha-APTADD), a potent inhibitor that inactivated aromatase by an enzyme-catalyzed process. Additional 7 alpha-thiosubstituted androsta-1,4-diene-3,17-dione derivatives were designed to further examine enzyme-catalyzed inactivation. Two halogenated and one unsubstituted 7 alpha-phenylthioandrosta-1,4-diene-3,17-diones were synthesized via an acid-catalyzed conjugate Michael addition of substituted thiophenols with androsta-1,4,6-triene-3,17-dione. Two 7 alpha-naphthylthioandrosta-1,4-diene-3,17-diones were synthesized via either acid-catalyzed or based-catalyzed conjugate Michael addition of substituted thionaphthols with androsta-1,4,6-triene-3,17-dione. These agents were evaluated for aromatase inhibitory activity in the human placental microsomal preparation. Under initial velocity assay conditions of low product formation, the inhibitors demonstrated potent inhibition of aromatase, with apparent Ki's ranging from 12 to 27 nM. Furthermore, these compounds produced time-dependent, first-order inactivation of aromatase in the presence of NADPH, whereas no aromatase inactivation was observed in the absence of NADPH. This enzyme-activated irreversible inhibition, also referred to as mechanism-based inhibition, can be prevented by the substrate androstenedione. Thus, the apparent Ki values for these inhibitors are consistent with earlier studies on 7 alpha-substituted competitive inhibitors that indicate bulky substituents can be accommodated at the 7 alpha-position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The protein kinase C (PKC) inhibitors Ro 318220 and GF 109203X have been used in over 350 published studies to investigate the physiological roles of PKC. Here we demonstrate that these inhibitors are not selective for PKC isoforms as was previously assumed. Ro 318220 inhibited MAPKAP kinase-1beta (also known as Rsk-2) in vitro (IC50 3nM) more potently than it inhibited mixed PKC isoforms (IC50 5 nM), and it also inhibited p70 S6 kinase (IC50 15 nM). GF 109203X also potently inhibited MAPKAP kinase-1beta (IC50 50 nM) and p70 S6 kinase (IC50 100 nM) with similar potency to PKC isoforms (IC50 30 nM). The inhibition of MAPKAP kinase-1beta, p70 S6 kinase, and probably other protein kinases, may explain many of the effects previously attributed to PKC.  相似文献   

14.
In order to understand the mechanism involved in the aromatase inactivation by androst-5-ene-4,7,17-trione (4), a suicide substrate of aromatase, 5beta,6beta-epoxyandrosta-4,7,17,19-tetraone (6) was synthesized as a candidate for a reactive electrophile involved in irreversible binding to the active site of aromatase upon treatment of 19-oxo-5-ene steroid 5 with hydrogen peroxide in the presence of NaHCO3. The epoxide 6 was a competitive inhibitor of human placental aromatase (Ki = 34 microM); moreover, it inactivated the enzyme in an active-site-directed manner in the absence of NADPH (Ki = 36 microM, a rate constant for inactivation (k(inact)) = 0.027 min(-1)). NADPH stimulated the inactivation rate, but the substrate androst-4-ene-3,17-dione blocked the inactivation. A nucleophile, L-cysteine, did not cause a significant change in the inactivation. When both the epoxide 6 and its 19-methyl analog 7 were subjected separately to a reaction with N-acetyl-L-cysteine in the presence of NaHCO3, the 19-oxo compound 6 disappeared from the reaction mixture more rapidly (t1/2 = 6.0 min) than the 19-methyl analog 7 (t1/2 = 16 min). On the basis of these results, it is suggested that the 5beta,6beta-epoxy-19-oxo steroid 6 may be the reactive electrophile that alkylates a nucleophilic residue of the amino acid of the active site.  相似文献   

15.
The role of the lipid bilayer and the peptidoglycan of the mycobacterial cell wall in the permeation of beta-sitosterol into the cell and its transformation to androst-1-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD) was studied. Specific inhibitors were used at concentrations affecting the biosynthesis of the assumed target structures, but causing only partial cell growth inhibition or exerting no effect on growth. m-Fluorophenylalanine and DL-norleucine which are known to disorganize the biosynthesis of amphipatic components of the outer layer of the lipid bilayer, used at concentrations 250 micrograms/ml and 400 micrograms/ml, respectively, increased the formation rate of AD+ADD from 0.3 (control) to 0.7 and 0.8 mg products/g dry weight/h. The disorganization of the underlying mycolyl-arabinogalactan structure by the action of the ethambutol at the concentration 40 micrograms/ml, at which the cell growth was apparently not affected, caused the decrease of the product formation from 135 mg/l to 70 mg/l. In the presence of isoniazid (350 micrograms/ml) only trace amounts of AD accumulated during 48 hours of transformation indicating much lower activity than that of the intact cells. The most effective among the tested inhibitors of peptidoglycan synthesis were glycine (15 mg/ml) and vancomycin (150 micrograms/ml) which enhanced the transformation activity of the treated cells nearly three times. Increased transformation rate was also obtained by the action of colistin at concentrations ranging from 10 micrograms/ml to 15 micrograms/ml.  相似文献   

16.
Two series of 6-alkylandrosta-4,6-diene-3,17-diones (5) and their 1,4,6-triene analogs 6 were synthesized as aromatase inhibitors to gain insight into the structure-activity relationship between varying the 6-n-alkyl substituents (C1-C7) and inhibitory activity. All of the steroids synthesized were extremely powerful competitive inhibitors of aromatase in human placental microsomes, with apparent Ki values for the 6-alkyl-4,6-diene steroids 5 ranging from 17 to 36 nM and with those for the 1,4,6-triene steroids 6 ranging from 2.5 to 58 nM. The 6-ethyl-1,4,6-triene compound 6b (Ki = 2.5 nM) was the most potent inhibitor among them. The 6-alkyl-1,4,6-triene steroids 6, except for the 6-methyl analog 6a, and higher affinity for aromatase than the natural substrate androstenedione (K(m) = 24 nM), and their inhibitory activities were more potent than the corresponding 4,6-diene steroids 5. In a series of the 4,6-diene steroids 5, compounds 5c-f with the n-alkyl chain substituents (C3 to C6) also had slightly higher affinity than androstenedione for dromatase. All of the 1,4,6-triene steroids 6 inactivated aromatase in a time-dependent manner, with k(inact) values ranging from 0.021 to 0.074 min-1; in contrast, the 4,6-diene analogs 5 did not. The inactivation was prevented by androstenedione, and no significant effect of L-cysteine on the inactivation was observed in each case. These results indicate that the length of the n-alkyl substituent at C-6 of androsta-1,4,6-triene-3,17-dione (6h), rather than its 4,6-diene analog 5h, plays a critical role in tight binding to the active site of aromatase. No significant correlation was observed between affinity for the enzyme and the inactivation ability of the 6-alkyl-1,4,6-trienes.  相似文献   

17.
A study on the use of derivatized carbohydrates as C2-symmetric HIV-1 protease inhibitors has been undertaken. L-Mannaric acid (6) was bis-O-benzylated at C-2 and C-5 and subsequently coupled with amino acids and amines to give C2-symmetric products based on C-terminal duplication. Potent HIV protease inhibitors, 28 Ki = 0.4 nM and 43 Ki = 0.2 nM, have been discovered, and two synthetic methodologies have been developed, one whereby these inhibitors can be prepared in just three chemical steps from commercially available materials. A remarkable increase in potency going from IC50 = 5000 nM (23) to IC50 = 15 nM (28) was observed upon exchanging -COOMe for -CONHMe in the inhibitor, resulting in the net addition of one hydrogen bond interaction between each of the two -NH- groups and the HIV protease backbone (Gly 48/148). The X-ray crystal structures of 43 and of 48 have been determined (Figures 5 and 6), revealing the binding mode of these inhibitors which will aid further design.  相似文献   

18.
Five sulfur-containing analogues of 2,3-oxidosqualene (OS) were evaluated as inhibitors of squalene:hopene cyclase (SHC) from Alicyclobacillus acidocaldarius. In these analogues, sulfur replaces carbons at C-6, C-10, C-14, C-18, or C-19 of OS. Each analogue was a submicromolar inhibitor of SHC with IC50 values ranging from 60 to 570 nM. Enzyme inhibition kinetic analysis was performed using homogeneous recombinant A. acidocaldarius SHC. While analogues 9 (S-14, Ki = 109 nM, kinact = 0.058 min-1) and 11 (S-19, Ki = 83 nM, kinact = 0.054 min-1) were time-dependent inhibitors of SHC, analogues 7 (S-6, Ki = 127 nM) and 8 (S-10, Ki = 971 nM) showed no time dependency with SHC. Analogue 10 (S-18) was the most potent inhibitor and showed time-dependent irreversible inhibition (Ki = 31 nM, kinact = 0.071 min-1). Kinetic analysis for the five analogues with purified rat liver OSLC was conducted to compare the vertebrate and prokaryotic enzymes. Affinity labeling experiments, using either [17-3H]10 or [22-3H]10 with crude and with pure recombinant SHC, clearly showed specific labeling. A single major radioactive band at 72 kDa on SDS-PAGE indicated that irreversible covalent modification of SHC had occurred. These results suggest that the presence of sulfur at C-18 of OS can interrupt the cyclization and that an intermediate partially cyclized cation may be captured by a nucleophilic residue of the SHC active site.  相似文献   

19.
X-ray crystallography and computer-assisted molecular modeling (CAMM) studies aided in the design of a potent series of mammalian purine nucleoside phosphorylase (PNP) inhibitors. Enhanced potency was achieved by designing substituted 9-(arylmethyl)-9-deazaguanine analogs that interact favorably with all three of the binding subsites of the PNP active site, namely the purine binding site, the hydrophobic pocket, and the phosphate binding site. The most potent PNP inhibitor prepared during our investigation, (S)-9-[1-(3-chlorophenyl)-2-carboxyethyl]-9-deazaguanine (18b), was shown to have an IC50 of 6 nM, whereas the corresponding (R)-isomer was 30-fold less potent.  相似文献   

20.
OBJECTIVE: To develop a pharmacokinetic-pharmacodynamic model that characterizes the conversion of testosterone to dihydrotestosterone (DHT) by 5 alpha-reductase types 1 and 2 and the irreversible inhibition of 5 alpha-reductase by finasteride, a 5 alpha-reductase type 2 inhibitor and by GI198745 (dutasteride), a potent and specific dual 5 alpha-reductase inhibitor. METHODS: Healthy men (n = 48) received doses of 0.1 to 40 mg GI198745 (n = 4 subjects per dose), 5 mg finasteride (n = 8), or placebo (n = 8) in a parallel-group study. Plasma concentrations of GI198745, finasteride, and DHT were measured frequently up to 8 weeks after dosing. Models were fitted with mixed-effects modeling with the NONMEM program. RESULTS: The pharmacodynamics were well described with a model that accounted for the rates of DHT formation and elimination, 5 alpha-reductase turnover, relative capacity of the 2 5 alpha-reductase isozymes, and the rates of irreversible inhibition of one (finasteride) or both (GI198745) types of 5 alpha-reductase. The model indicated that type 2 5 alpha-reductase contributed approximately 80% of plasma DHT. GI198745 was about 3-fold more potent than finasteride on 5 alpha-reductase type 2. Nearly full blockade of both isozymes was achieved at doses of 10 mg or more GI198745, although the potency of this agent on 5 alpha-reductase type 1 was less than on type 2. CONCLUSIONS: A physiologically based model for the turnover and irreversible inhibition of 5 alpha-reductase and for formation and elimination of DHT described the data well. This model helps explain differences in the rates of onset and offset of effect and offers a way to determine the relative potency of the irreversible 5 alpha-reductase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号