首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Saccharomyces cerevisiae is one of the most widely used model organisms for investigating various aspects of basic cellular functions that are conserved in human cells. This organism, as well as human cells, can modulate its metabolism in response to specific growth conditions, different environmental changes, and nutrient depletion. This adaptation results in a metabolic reprogramming of specific metabolic pathways. Mitochondrial carriers play a fundamental role in cellular metabolism, connecting mitochondrial with cytosolic reactions. By transporting substrates across the inner membrane of mitochondria, they contribute to many processes that are central to cellular function. The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family, most of which have been functionally characterized. The aim of this review is to describe the role of the so far identified yeast mitochondrial carriers in cell metabolism, attempting to show the functional connections between substrates transport and specific metabolic pathways, such as oxidative phosphorylation, lipid metabolism, gluconeogenesis, and amino acids synthesis. Analysis of the literature reveals that these proteins transport substrates involved in the same metabolic pathway with a high degree of flexibility and coordination. The understanding of the role of mitochondrial carriers in yeast biology and metabolism could be useful for clarifying unexplored aspects related to the mitochondrial carrier network. Such knowledge will hopefully help in obtaining more insight into the molecular basis of human diseases.  相似文献   

2.
Uncoupling proteins (UCPs) belong to a family of mitochondrial carrier proteins that are present in the mitochondrial inner membrane. UCP1 was first identified followed by its two homologs, UCP2 and UCP3. The physiological functions of UCP include lowering mitochondrial membrane potential and dissipating metabolic energy as heat. However, UCP can be dysregulated and may contribute to the pathogenesis of metabolic disorders and obesity. Recent studies suggest that UCP also plays a role in neurodegenerative diseases and atherosclerosis. In addition, the widely expressed UCP, UCP2, has been shown to be upregulated in a number of aggressive human cancers. One mechanism of UCP2 upregulation in these cancers is due to oxidative stress, and elevated UCP2 in turn reduces oxidative stress, which provides a growth advantage for these cancers. Nevertheless, new studies suggest UCP2 may interact with oncogenes and tumor suppressor genes, providing a potential new mechanism of how UCP2 contributes to cancer development. In this review, the evidence supporting the role of UCPs in diseases other than diabetes and obesity, the reports on how UCP is regulated in cancer cells, and how UCP may regulate p53 will be discussed.  相似文献   

3.
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.  相似文献   

4.
Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.  相似文献   

5.
Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline—which belongs to the tetracycline class—reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.  相似文献   

6.
Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model “Mitomouse”. Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson’s disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.  相似文献   

7.
Aicardi–Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients’ LCLs suggesting a pivotal role in AGS pathogenesis.  相似文献   

8.
Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA’s transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s−1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion’s transport across the membrane. ANT’s dual function—ADP/ATP and H+ transport in the presence of FA—may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.  相似文献   

9.
10.
Brown/beige adipocyte thermogenesis is a process that is important for energy balance. The thermogenesis of brown/beige adipocytes occurs in the mitochondria, which is modulated by the dynamic balance between mitochondrial fusion and fission. Mitophagy is also involved in mitochondrial dynamics. The sorting and assembly machinery (SAM) complex protein, SAMM50, plays a key role in mitochondrial dynamics and quality control through regulating mitophagy. However, the roles of SAMM50 in the thermogenesis of beige adipocytes remain unknown. Thus, the objective of this study was to conduct functional analyses of SAMM50. The expression of mitochondrial fusion genes was repressed by SAMM50 knockdown but was not altered by SAMM50 overexpression. These results agreed with the distribution of the fluorescence-stained mitochondria and an mtDNA copy number. In contrast, the expression of mitochondrial fission genes showed an opposite outcome. As a result, suppression by the SAMM50 shRNA inhibited the expression of thermogenic genes (UCP1, PPARGC1A, DIO2, ELOVL3, CIDEA, and CIDEC) and mitochondrial-related genes (CYCS, COX7A1, TFAM, CPT1B, and CPT2). Conversely, SAMM50 overexpression promoted the expression of the thermogenic genes and mitochondrial genes. Thus, SAMM50 links the balance between the mitochondrial dynamics and thermogenesis of beige adipocytes.  相似文献   

11.
Erv1 (EC number 1.8.3.2) is an essential mitochondrial enzyme catalyzing protein import and oxidative folding in the mitochondrial intermembrane space. Erv1 has both oxidase and cytochrome c reductase activities. While both Erv1 and cytochrome c were reported to be membrane associated in mitochondria, it is unknown how the mitochondrial membrane environment may affect the function of Erv1. Here, in this study, we used liposomes to mimic the mitochondrial membrane and investigated the effect of liposomes and cardiolipin on the folding and function of yeast Erv1. Enzyme kinetics of both the oxidase and cytochrome c reductase activity of Erv1 were studied using oxygen consumption analysis and spectroscopic methods. Our results showed that the presence of liposomes has mild impacts on Erv1 oxidase activity, but significantly inhibited the catalytic efficiency of Erv1 cytochrome c reductase activity in a cardiolipin-dependent manner. Taken together, the results of this study provide important insights into the function of Erv1 in the mitochondria, suggesting that molecular oxygen is a better substrate than cytochrome c for Erv1 in the yeast mitochondria.  相似文献   

12.
Epidemiological studies support a connection between the two common disorders, type-2 diabetes and Alzheimer’s disease. Both conditions have local amyloid formation in their pathogenesis, and cross-seeding between islet amyloid polypeptide (IAPP) and amyloid β (Aβ) could constitute the link. The bimolecular fluorescence complementation (BiFC) assay was used to investigate the occurrence of heterologous interactions between IAPP and Aβ and to compare the potential toxic effects of IAPP/Aβ, IAPP/IAPP, and Aβ/Aβ expression in living cells. Microscopy was used to confirm the fluorescence and determine the lysosomal, mitochondrial areas and mitochondrial membrane potential, and a FACS analysis was used to determine ROS production and the role for autophagy. Drosophila melanogaster expressing IAPP and Aβ was used to study their co-deposition and effects on longevity. We showed that the co-expression of IAPP and Aβ resulted in fluorophore reconstitution to the same extent as determined for homologous IAPP/IAPP or Aβ/Aβ expression. The BiFC(+)/BiFC(−) ratio of lysosomal area calculations increased in transfected cells independent of the vector combinations, while only Aβ/Aβ expression increased mitochondrial membrane potential. Expression combinations containing Aβ were necessary for the formation of a congophilic amyloid. In Drosophila melanogaster expressing IAPP/Aβ, co-deposition of the amyloid-forming peptides caused reduced longevity. The BiFC results confirmed a heterologous interaction between IAPP and Aβ, while co-deposits in the brain of Drosophila suggest mixed amyloid aggregates.  相似文献   

13.
We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.  相似文献   

14.
Alzheimer’s disease is a widespread and devastating neurological disorder associated with proteotoxic events caused by the misfolding and aggregation of the amyloid-β peptide. To find therapeutic strategies to combat this disease, Drosophila melanogaster has proved to be an excellent model organism that is able to uncover anti-proteotoxic candidates due to its outstanding genetic toolbox and resemblance to human disease genes. In this review, we highlight the use of Drosophila melanogaster to both study the proteotoxicity of the amyloid-β peptide and to screen for drug candidates. Expanding the knowledge of how the etiology of Alzheimer’s disease is related to proteotoxicity and how drugs can be used to block disease progression will hopefully shed further light on the field in the search for disease-modifying treatments.  相似文献   

15.
Mitochondrial i-AAA proteinase Yme1 is a multifunctional protein that plays important roles in maintaining mitochondrial protein homeostasis and regulating biogenesis and function of mitochondrial proteins. However, due to the complex interplay of mitochondria and the multifunctional nature of Yme1, how Yme1 affects mitochondrial function and protein homeostasis is still poorly understood. In this study, we investigated how YME1 deletion affects yeast Saccharomyces cerevisiae growth, chronological life span, mitochondrial protein homeostasis and function, with a focus on the mitochondrial oxidative phosphorylation (OXPHOS) complexes. Our results show that whilst the YME1 deleted cells grow poorly under respiratory conditions, they grow similar to wild-type yeast under fermentative conditions. However, the chronological life span is impaired, indicating that Yme1 plays a key role in longevity. Using highly enriched mitochondrial extract and proteomic analysis, we show that the abundances of many mitochondrial proteins are altered by YME1 deletion. Several components of the respiratory chain complexes II, III, IV and V were significantly decreased, suggesting that Yme1 plays an important role in maintaining the level and function of complexes II-V. This result was confirmed using blue native-PAGE and in-solution-based enzyme activity assays. Taken together, this study shows that Yme1 plays an important role in the chronological life span and mitochondrial protein homeostasis and has deciphered its function in maintaining the activity of mitochondrial OXPHOS complexes.  相似文献   

16.
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.  相似文献   

17.
Sixteen adult, 4-month-old male Wistar rats were randomly assigned to the training group (n = 8) or the control group (n = 8). We elucidated the effects of 8 weeks of endurance training on coenzyme Q (Q) content and the formation of reactive oxygen species (ROS) at the tissue level and in isolated mitochondria of the rat heart, liver and brain. We demonstrated that endurance training enhanced mitochondrial biogenesis in all tested organs, while a significant increase in the Q redox state was observed in the heart and brain, indicating an elevated level of QH2 as an antioxidant. Moreover, endurance training increased the mQH2 antioxidant pool in the mitochondria of the heart and liver, but not in the brain. At the tissue and isolated mitochondria level, an increase in ROS formation was only observed in the heart. ROS formation observed in the mitochondria of individual rat tissues after training may be associated with changes in the activity/amount of individual components of the oxidative phosphorylation system and its molecular organization, as well as with the size of the oxidized pool of mitochondrial Q acting as an electron carrier in the respiratory chain. Our results indicate that tissue-dependent changes induced by endurance training in the cellular and mitochondrial QH2 pool acting as an antioxidant and in the mitochondrial Q pool serving the respiratory chain may serve important roles in energy metabolism, redox homeostasis and the level of oxidative stress.  相似文献   

18.
Microsporidia are obligate intracellular parasites that infect a wide variety of hosts ranging from invertebrates to vertebrates. These parasites have evolved strategies to directly hijack host mitochondria for manipulating host metabolism and immunity. However, the mechanism of microsporidia interacting with host mitochondria is unclear. In the present study, we show that microsporidian Encephalitozoon greatly induce host mitochondrial fragmentation (HMF) in multiple cells. We then reveal that the parasites promote the phosphorylation of dynamin 1-like protein (DRP1) at the 616th serine (Ser616), and dephosphorylation of the 637th serine (Ser637) by highly activating mitochondrial phosphoglycerate mutase 5 (PGAM5). These phosphorylation modifications result in the translocation of DRP1 from cytosol to the mitochondrial outer membrane, and finally lead to HMF. Furthermore, treatment with mitochondrial division inhibitor 1 (Mdivi1) significantly reduced microsporidian proliferation, indicating that the HMF are crucial for microsporidian replication. In summary, our findings reveal the mechanism that microsporidia manipulate HMF and provide references for further understanding the interactions between these ubiquitous pathogens with host mitochondria.  相似文献   

19.
Icariin, a pharmacologically active component isolated from the Chinese herb Epimedium, has been shown to improve spatial learning and memory abilities in Alzheimer’s disease (AD) rats through inhibition of Aβ production and tau protein hyperphosphorylation. However, the potential mechanism of icariin-induced protective effects against mitochondrial dysfunctions in AD still remains unclear. In the present study, we investigated the effect of icariin on the modulation of mitochondrial transport and distribution in primary hippocampal cultures from triple-transgenic (3× Tg) AD mice. The results showed that icariin enhanced mitochondrial motility and increased mitochondrial index and mitochondrial length and size in the diseased neurons. Additionally, the expression of the key mitochondrial enzyme, pyruvate dehydrogenase-E1α (PDHE1α), and the post synaptic density protein 95 (PSD95), was preserved in AD neurons after icariin treatment, accompanied by a downregulation of Aβ and phosphorylated tau expression in the corresponding areas. Further study showed that icariin treatment resulted in a decrease in mitochondrial fission protein dynamin-related protein 1 (Drp1) and an increase in fusion protein Mitofusin 2 (Mfn2). These data indicate that icariin can promote mitochondrial transport, protect mitochondria against fragmentation and preserve the expression of mitochondrial and synaptic functional proteins in AD neurons. Thus, icariin may be a potential therapeutic complement for AD and other mitochondrial malfunction-related neuronal degenerative diseases.  相似文献   

20.
Diabetes mellitus is a systemic metabolic disorder associated with mitochondrial dysfunction, with mitochondrial permeability transition (MPT) pore opening being recognized as one of its pathogenic mechanisms. Alisporivir has been recently identified as a non-immunosuppressive analogue of the MPT pore blocker cyclosporin A and has broad therapeutic potential. The purpose of the present work was to study the effect of alisporivir (2.5 mg/kg/day i.p.) on the ultrastructure and functions of the skeletal muscle mitochondria of mice with diabetes mellitus induced by a high-fat diet combined with streptozotocin injections. The glucose tolerance tests indicated that alisporivir increased the rate of glucose utilization in diabetic mice. An electron microscopy analysis showed that alisporivir prevented diabetes-induced changes in the ultrastructure and content of the mitochondria in myocytes. In diabetes, the ADP-stimulated respiration, respiratory control, and ADP/O ratios and the level of ATP synthase in the mitochondria decreased, whereas alisporivir treatment restored these indicators. Alisporivir eliminated diabetes-induced increases in mitochondrial lipid peroxidation products. Diabetic mice showed decreased mRNA levels of Atp5f1a, Ant1, and Ppif and increased levels of Ant2 in the skeletal muscles. The skeletal muscle mitochondria of diabetic animals were sensitized to the MPT pore opening. Alisporivir normalized the expression level of Ant2 and mitochondrial susceptibility to the MPT pore opening. In parallel, the levels of Mfn2 and Drp1 also returned to control values, suggesting a normalization of mitochondrial dynamics. These findings suggest that the targeting of the MPT pore opening by alisporivir is a therapeutic approach to prevent the development of mitochondrial dysfunction and associated oxidative stress in the skeletal muscles in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号