首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
眼底血管图像分析可用于各种眼病的评估和监测.它在降低失明风险方面发挥着重要作用.目前,许多眼底血管分割模型在小血管的分割结果上仍需改进.针对上述问题,我们提出了一种改进U-Net模型的视网膜血管分割方法.首先,利用网状跳跃连接提取浅层到深层的特征映射.然后将特征图拼接融合,最大限度地发挥它们的作用.在特征层中,我们采用...  相似文献   

2.
对于一些可以从视网膜血管观测到的眼科疾病, 眼底图像起着关键的作用, 能够为专业的医科人员提供有效的参考, 然而手工标注血管费时费力, 且工作量较大, 所以实现自动智能的血管分割方法对相关人员大有裨益. 本文将Attention机制与RU-Net结构融合应用到生成对抗网络(generative adversarial network, GAN)的生成器中, 形成了一种新的结构——Retina-GAN. 同时在对眼底图像的预处理步骤上选择了自动色彩均衡 (ACE), 提高图像对比度, 使血管更加清晰. 为了验证所提出的方法, 选用DRIVE数据集, 并把Retina-GAN与其他研究比照, 测量分析了算法准确性、灵敏度和特异度. 实验数据显示Retina-GAN比其他模型具有更好的性能.  相似文献   

3.
目前,癌症严重威胁着人类的健康.医学成像是癌症病灶诊断和治疗的有效手段,及时发现早期病灶能够预防和有效控制癌症.近年来,深度学习受到医学界的重点关注,其中U-Net模型在医学图像的语义分割上获得了良好的分割效果.本文使用U-Net模型对肝脏、眼底血管图像进行分割,验证了模型的可靠性;在肺结节医学图像分割的场景下探索了模...  相似文献   

4.
近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中。在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点。如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度。研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路。  相似文献   

5.
U-Net简单高效的网络结构,被广泛应用于医学图像分割任务中,学者们针对U-Net结构进行了很多的研究和改进。基于U-Net网络结构的改进方法从以下方面进行归纳总结:总结了U-Net网络在医学图像分割领域的关键挑战;归纳了常用于U-Net网络的医学图像数据集格式及特点;重点总结U-Net和U-Net变体算法六大改进机制:跳跃连接机制、生成对抗网络、残差连接机制、3D-UNet、Transformer机制、密集连接机制。最后,探讨六大改进机制与常用医学数据之间的关系,并指出未来改进思路和方向,激发U-Net在医学图像分割的无限潜力。  相似文献   

6.
黄梨  卢龙 《计算机应用》2021,41(6):1820-1827
脑卒中病灶自动分割可以为临床决策过程提供有价值的支持,而由于病灶大小、形状和位置的多样性,这项任务具有一定的挑战性.以往的研究未能很好地捕获有助于处理这种多样性的全局上下文信息.针对小样本情境下的缺血性脑卒中病灶分割这一问题,提出了在传统U-Net的基础上融合了残差模块和non-local块的端到端神经网络,用于从多模...  相似文献   

7.
针对糖尿病视网膜病变(DR)图像,提出了一种基于多任务学习的图像多分类分割方法.首先,通过Otsu阈值算法将大部分无病灶信息像素去除;其次,通过滑动窗口切割的方法将图像切分为若干小尺寸的图像,以解决医学图像分辨率过大以及病灶在图像中占比较小的问题;再次,将不存在病灶的子图剔除,以增大含病灶子图的比例;最后,利用UNet++多任务学习属性,并且用转置卷积代替传统上采样,进行多输出多病灶的图像分割.通过在国际公开的IDRID和DDR数据集上进行验证,在IDRi D上取得0.713 1的m AUPR,在DDR上取得0.569 1的m AUPR.  相似文献   

8.
为解决传统模型与算法对遥感卫星图像小目标的分割精度低、泛化能力差等问题,提出一种基于改进U-Net的图像分割算法。将骨干网络改为ResNet18并加入优化后的空洞卷积池化金字塔与卷积注意力机制模块,充分提取小目标边缘特征。该算法在中国南部某地区的公开卫星图像数据集上的平均交并比与分割总精度分别达到了75.8%与95.6%,均超过U-Net、DeepLabV3+、SegNet、W-Net等主流语义分割网络。实验结果表明,该算法能有效改善网络的预测精度与小目标的分割结果。  相似文献   

9.
人体肾脏存在形状的多样性和解剖学的复杂性,囊肿病变也会导致肾脏形状发生大幅变化。为应对CT图像囊肿肾脏自动分割存在的诸多挑战,提出一种新型深度分割网络模型。该模型设计有带残差连接的双注意力模块,在残差结构的基础上,联合空间注意力和通道注意力机制自适应学习更加有效的特征表达。依据U-Net架构,以残差双注意力模块为基础模块构建编码器和解码器,设置层级间的跳跃连接,使网络能够更加关注肾脏区域特征,有效应对肾脏的形状变化。为了验证所提模型的有效性,从医院共采集79位肾囊肿患者的CT图像进行训练和测试,实验结果表明该模型能够准确分割CT图像切片中的肾脏区域,且各项分割指标优于多个经典分割网络模型。  相似文献   

10.
原始的U-Net采用跳跃结构结合高低层的图像信息,使得U-Net模型有良好的分割效果,但是分割结果在宫颈细胞核边缘依然存在分割欠佳、过分割和欠分割等不足.由此提出了改进型U-Net网络图像分割方法.首先将稠密连接的DenseNet引入U-Net的编码器部分,以解决编码器部分相对简单,不能提取相对抽象的高层语义特征.然后...  相似文献   

11.
青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗.但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象.因此,利用深度学习技术辅助诊断眼疾病具有重大意义.如何更为准确且有效地分割视网膜血管成为眼疾病辅助诊断的研究热点问题.于是,基于U型网络(U-Net)提出一种新的网络结构称...  相似文献   

12.
眼底视网膜血管网络是诊断糖尿病视网膜病、青光眼等眼科疾病的重要手段.根据视网膜血管的树状网络结构和灰度分布特征,提出一种基于Morlet小波和高斯匹配滤波的分割方法.首先通过分析二维Morlet小波变换对血管的系数响应来构造血管特征函数图;随后采用多尺度的离散高斯核对血管骨架进行匹配滤波,提高微小血管与背景区域的对比度;最后结合区域连通性分析和滞后阈值技术滤除背景噪声,提取出更加精确的血管树细节.在DRIVE和STARE数据库上的实验结果表明,作为非监督类分割方法,该方法能有效地提取眼底图像的视网膜血管网络,粘连现象少,而且对图像中噪声的鲁棒性较其他方法明显提高,具有较好的临床应用参考价值.  相似文献   

13.
梅旭璋  江红  孙军 《计算机工程》2020,46(3):267-272,279
视网膜血管的结构信息对眼科疾病的诊断具有重要的指导意义,对视网膜血管图像进行高效正确的分割成为临床的迫切需求。传统的人工分割方法耗时较长且易受个人主观因素的影响,分割质量不高。为此,提出一种基于密集注意力网络的图像自动分割算法。将编码器-解码器全卷积神经网络的基础结构与密集连接网络相结合,以充分提取每一层的特征,在网络的解码器端引入注意力门模块,对不必要的特征进行抑制,提高视网膜血管图像的分割精度。在DRIVE和STARE眼底图像数据集上的实验结果表明,与其他基于深度学习的算法相比,该算法的敏感性、特异性、准确率和AUC值均较高,分割效果较好。  相似文献   

14.
针对传统视网膜图像血管分割中部分血管轮廓粗糙、血管末梢和分支细节丢失等问题,提出 一种结合线性谱聚类超像素与生成对抗网络(Generative Adversarial Networks,GAN)的视网膜血管分割 方法。该方法首先对 GAN 进行改进,采用空洞空间金字塔池化模块的多尺度特征提取来提高 GAN 分 割精度,在获得视网膜血管分割图像后,利用线性谱聚类超像素分割的边缘贴合性高、轮廓清晰的特 点,将 GAN 输出图像映射到超像素分割图再对像素块进行分类,以达到分割的效果。仿真实验结果表 明,与传统的视网膜血管分割方法相比,该方法在灵敏度和准确性上有一定提升,轮廓边缘细节方面 有着更好的效果。  相似文献   

15.
自FCN网络在2014年提出后,SegNet、DeepLab等一系列关于图像语义分割的深度学习架构被相继提出。与传统方法相比,这些架构效果更好、运算速度更快,已经能够运用于自然图像的分割处理。围绕图像语义分割技术,对常用的数据集和典型网络架构进行了梳理分析,对2017年以来的新进展进行了综合研究,利用主流评价指标对主要模型的语义分割效果进行了比较和分析。对语义分割技术面临的挑战以及可能的发展趋势进行了展望。  相似文献   

16.
图像分割技术的主要对象为自然图像和医学图像,相对于自然图像而言,医学图像的语义分割通常需要较高的精度以进行下一步的临床分析、诊断和规划治疗。目前用于医学图像语义分割的深度神经网络模型由于仅考虑位置的平移不变性,存在局部感受野较小、无法表达长范围依赖关系的问题。设计一种面向医学图像的分割模型,基于内卷U-Net网络,使用内卷操作代替传统的卷积操作,并将内卷结构作为基本的网络结构,提升模型对医学图像局部特征的学习能力。在模型的瓶颈层引入注意力机制模块来学习图像长范围的依赖关系,以提高医学图像语义分割的精度。在肺部CT数据集上的实验结果表明,该模型的Dice系数为0.998,较基于卷积神经网络的分割模型约提高5%,并且大幅缩短Hausdorff距离,具有更高的分割准确度以及较好的稳健性。  相似文献   

17.
为实现轮毂缺陷检测自动化,该文依据轮毂X射线图像,提出一种基于U-Net卷积神经网络的自动分割的改进方法。将原始U-Net模型的最大池化操作替换为卷积操作,并加入Dropout层对网络进行优化,提升模型可靠性。同时对带有缺陷的轮毂图像做数据预处理,用于训练改进的U-Net模型。结果表明,该网络在复杂轮毂X射线图像的缺陷识别中表现良好,DICE系数为0.8554,SSIM系数为0.9655,识别速度达到3 ms/张;该方法能较好地实现轮毂射线图像缺陷的自动分割,满足无损检测的自动化需要。  相似文献   

18.
提出了一种有效的基于颜色和位置相关信息的图像分割方法。图像以块为单位进行划分,在YUV空间,提取块的颜色特征,并对每小块进行小波变换,获得其小波能量特征。将颜色特征和能量特征作为每小块的特征向量,采用分层聚类的方法进行区域的合并。该方法在聚类过程中考虑了小块的位置关系,并能最终自动确定聚类的类别数。  相似文献   

19.
针对医生手动对肝脏肿瘤 CT 图像分割耗时、耗力,且易受主观判断影响的问题,该研究提 出一种深度监督残差网络(Deeply Supervised Residual Unet,DS-ResUnet)算法,以实现对腹部增强 CT 图像中肝脏及肝脏肿瘤区域进行全自动分割的目的。首先,利用公开发布的 MICCAI2017 肝脏肿瘤分 割(LiTS)挑战赛数据集,并使用 python 及 TensorFlow 开源框架进行数据分析;然后,构建深度监督 残差网络对肝脏及肝肿瘤图像进行自动分割;最后,通过平均 Dice 系数、全局 Dice 系数、Jaccard 系 数、平均对称表面距离(ASSD)、95% 豪斯多夫距离(HD95)、准确率和召回率七个评价指标对所提出 算法与 Unet 模型的性能进行比较分析。结果显示,所提出的 DS-ResUnet 算法在肝脏分割上的七个评 价指标结果依次为 96.06%、95.08%、92.54%、1.98 mm、12.87 mm、96.11%、96.06%,优于 Unet 模 型的结果(95.71%、94.52%、91.91%、2.41 mm、14.21 mm、95.48%、96.01%);在肝肿瘤分割上的 七个评价指标结果依次为 67.51%、76.65%、54.21%、6.65 mm、25.34 mm、80.39%、64.27%,也优 于 Unet 模型的结果(60.67%、73.47%、47.39%、9.43 mm、39.38 mm、79.61%、58.01%)。这表明所 提出的算法有效地提高了分割效果,实现了从 3D 腹部增强 CT 图像中全自动分割肝脏和肝肿瘤区域 的目的。  相似文献   

20.
基于U-Net的高分辨率遥感图像语义分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,传统分割方法应用受到极大限制,以深度卷积神经网络为代表的分割方法在诸多领域取得了突破进展。针对高分辨遥感图像分割问题,提出一种基于U-Net改进的深度卷积神经网络,实现了端到端的像素级语义分割。对原始数据集做了扩充,对每一类地物目标训练一个二分类模型,随后将各预测子图组合生成最终语义分割图像。采用了集成学习策略来提高分割精度,在“CCF卫星影像的AI分类与识别竞赛”数据集上取得了94%的训练准确率和90%的测试准确率。实验结果表明,该网络在拥有较高分割准确率的同时还具有良好的泛化能力,能够用于实际工程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号