首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a cAMP regulated chloride (Cl) and bicarbonate (HCO3) ion channel expressed at the apical plasma membrane (PM) of epithelial cells. Reduced CFTR protein results in decreased Cl secretion and excessive sodium reabsorption in epithelial cells, which consequently leads to epithelial dehydration and the accumulation of thick mucus within the affected organs, such as the lungs, pancreas, gastrointestinal (GI) tract, reproductive system and sweat glands. However, CFTR has been implicated in other functions besides transporting ions across epithelia. The rising number of references concerning its association to actin cytoskeleton organization, epithelial cell junctions and extracellular matrix (ECM) proteins suggests a role in the formation and maintenance of epithelial apical basolateral polarity. This review will focus on recent literature (the last 10 years) substantiating the role of CFTR in cell junction formation and actin cytoskeleton organization with its connection to the ECM.  相似文献   

2.
Renal cyst expansion in polycystic kidney disease (PKD) involves abnormalities in both cyst-lining-cell proliferation and fluid accumulation. Suppression of these processes may retard the progression of PKD. Evidence suggests that the activation of 5′ AMP-activated protein kinase (AMPK) inhibits cystic fibrosis transmembrane conductance regulator (CFTR)–mediated chloride secretion, leading to reduced progression of PKD. Here we investigated the pharmacological effects of panduratin A, a bioactive compound known as an AMPK activator, on CFTR-mediated chloride secretion and renal cyst development using in vitro and animal models of PKD. We demonstrated that AMPK was activated in immortalized normal renal cells and autosomal dominant polycystic kidney disease (ADPKD) cells following treatment with panduratin A. Treatment with panduratin A reduced the number of renal cyst colonies corresponding with a decrease in cell proliferation and phosphorylated p70/S6K, a downstream target of mTOR signaling. Additionally, panduratin A slowed cyst expansion via inhibition of the protein expression and transport function of CFTR. In heterozygous Han:Sprague–Dawley (Cy/+) rats, an animal model of PKD, intraperitoneal administration of panduratin A (25 mg/kg BW) for 5 weeks significantly decreased the kidney weight per body weight ratios and the cystic index. Panduratin A also reduced collagen deposition in renal tissue. Intraperitoneal administration of panduratin A caused abdominal bleeding and reduced body weight. However, 25 mg/kg BW of panduratin A via oral administration in the PCK rats, another non-orthologous PKD model, showed a significant decrease in the cystic index without severe adverse effects, indicating that the route of administration is critical in preventing adverse effects while still slowing disease progression. These findings reveal that panduratin A might hold therapeutic properties for the treatment of PKD.  相似文献   

3.
The homozygous deletion of the phenylalanine at position 508 (DeltaPhe508) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF-causing genetic defect. It has been proposed that the propensity of NBD1 to aggregate may lead to a lower display of the CFTR chloride channel to the cell membrane and to the disease, thus opening an avenue for the pharmacological development of CFTR folding correctors. Here, we show that a human monoclonal antibody fragment specific to the folded conformation of NBD1 inhibits the aggregation of NBD1 in vitro. However, in contrast to the previously published observations, we proved experimentally that NBD1 of wild-type and DeltaPhe508 version of CFTR display comparable propensities to aggregate in vitro and that the corresponding full-length CFTR protein reaches the cell membrane with comparable efficiency in mammalian cell expression systems. On the basis of our results, the 'folding defect' hypothesis seems unlikely to represent the causal mechanism for the pathogenesis of CF. A solid understanding of how the DeltaPhe508 deletion leads to the disease represents an absolute requirement for the development of effective drugs against CF.  相似文献   

4.
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens.  相似文献   

5.
Post-translational modifications (PTMs) play a crucial role during biogenesis of many transmembrane proteins. Previously, it had not been possible to evaluate PTMs in cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial ion channel responsible for cystic fibrosis, because of difficulty obtaining sufficient amounts of purified protein. We recently used an inducible overexpression strategy to generate recombinant CFTR protein at levels suitable for purification and detailed analysis. Using liquid chromatography (LC) tandem and multiple reaction ion monitoring (MRM) mass spectrometry, we identified specific sites of PTMs, including palmitoylation, phosphorylation, methylation and possible ubiquitination. Many of these covalent CFTR modifications have not been described previously, but are likely to influence key and clinically important molecular processes including protein maturation, gating and the mechanisms underlying certain mutations associated with disease.  相似文献   

6.
Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX‐809 has been reported to facilitate the folding and trafficking of F508del‐CFTR and augment its channel function. The mechanism of action of VX‐809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX‐809: does it bind CFTR directly in order to exert its action? We synthesized two VX‐809 derivatives, ALK‐809 and SUL‐809, that possess an alkyne group and retain the rescue capacity of VX‐809. By using CuI‐catalyzed click chemistry, we provide evidence that the VX‐809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.  相似文献   

7.
Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.  相似文献   

8.
Dry eye disease is one of the most common diseases, with increasing prevalence in many countries, but treatment options are limited. Cystic fibrosis transmembrane conductance regulator (CFTR) is a major ion channel that facilitates fluid secretion in ocular surface epithelium and is a potential target of therapeutic agent for the treatment of dry eye disease. In this study, we performed a cell-based, high-throughput screening for the identification of novel natural products that activate CFTR and restore the aqueous deficiency in dry eye. Screening of 1000 natural products revealed isorhamnetin, a flavonol aglycone, as a novel CFTR activator. Electrophysiological studies showed that isorhamnetin significantly increased CFTR chloride current, both wild type and ∆F508-CFTR. Isorhamnetin did not alter intracellular cAMP levels and the activity of other ion channels, including ANO1, ENaC, and hERG. Notably, application of isorhamnetin on mouse ocular surface induced CFTR activation and increased tear volume. In addition, isorhamnetin significantly reduced ocular surface damage and expression of interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α in an experimental mouse model of dry eye. These data suggest that isorhamnetin may be used to treat dry eye disease.  相似文献   

9.
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.  相似文献   

10.
One key element to the health of the ocular surface encompasses the presence of gel-forming mucins in the pre-ocular tear film. Conjunctival goblet cells are specialized epithelial cells that secrete mucins necessary for tear film stability and general homeostasis. Their dysfunction can be linked to a range of ocular surface inflammation disorders and chronic injuries. To obtain new perspectives and angles to tackle mucin deficiency, the need for an accurate evaluation of their presence and corresponding mucin secretion in ex vivo conjunctival cultures has become a requisite. In vitro, goblet cells show a significant decrease in the production and secretion of gel-forming mucins, accompanied by signs of dedifferentiation or transdifferentiation. Explant cultures on laminin-treated CLP-PEG hydrogels can, however, support the production of gel-forming mucins. Together, we challenge the current paradigm to evaluate the presence of cultured goblet cells solely based on their general mucin (MUC) content through imaging analyses, showing the need for additional techniques to assess the functionality of goblet cells. In addition, we broadened the gel-forming mucin profile of in vivo goblet cells with MUC5B and MUC6, while MUC2 and MUC6 is added to the profile of cultured goblet cells.  相似文献   

11.
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.  相似文献   

12.
The aim of this study was the identification of specific proteomic profiles, related to a restored cystic fibrosis transmembrane conductance regulator (CFTR) activity in cystic fibrosis (CF) leukocytes before and after ex vivo treatment with the potentiator VX770. We used leukocytes, isolated from CF patients carrying residual function mutations and eligible for Ivacaftor therapy, and performed CFTR activity together with proteomic analyses through micro-LC–MS. Bioinformatic analyses of the results obtained revealed the downregulation of proteins belonging to the leukocyte transendothelial migration and regulation of actin cytoskeleton pathways when CFTR activity was rescued by VX770 treatment. In particular, we focused our attention on matrix metalloproteinase 9 (MMP9), because the high expression of this protease potentially contributes to parenchyma lung destruction and dysfunction in CF. Thus, the downregulation of MMP9 could represent one of the possible positive effects of VX770 in decreasing the disease progression, and a potential biomarker for the prediction of the efficacy of therapies targeting the defect of Cl transport in CF.  相似文献   

13.
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.  相似文献   

14.
Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens.  相似文献   

15.
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM’s severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed “indirect evidence”). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.  相似文献   

16.
Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.  相似文献   

17.
Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which likely affects lipid metabolism. Increased lipid accumulation in in vitro produced embryos is a consequence of the stress during in vitro embryonic development process. There are several open questions concerning embryo lipid metabolism and developmental potential. Oocyte maturation and embryo development in vivo and in vitro may vary if the donors are subjected to any type of stress before follicle puncture because crucial changes in oocyte/embryonic metabolism occur in response to stress. However, little is known about lipid metabolism under additional stress (such as heat stress). Therefore, in this review, we aimed to update the information regarding the energy metabolism of oocytes and early bovine embryos exhibiting developmental competence, focusing on lipid metabolic pathways observed under in vivo, in vitro, and stress conditions.  相似文献   

18.
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to almost total absence of CFTR at the plasma membrane, a defect potentially corrected via drug‐based therapies. Herein, we report the first proof‐of‐principle study of a noninvasive imaging probe able to detect CFTR at the plasma membrane. We radiolabeled the CFTR inhibitor, CFTRinh‐172a, with technetium‐99m via a pyrazolyl‐diamine chelating unit, yielding a novel 99mTc(CO)3 complex. A non‐radioactive surrogate showed that the structural modifications introduced in the inhibitor did not affect its activity. The radioactive complex was able to detect plasma membrane CFTR, shown by its significantly higher uptake in wild‐type versus mutated cells. Furthermore, assessment of F508del CFTR pharmacological correction in human cells using the radioactive complex revealed differences in corrector versus control uptake, recapitulating the biochemical correction observed for the protein.  相似文献   

19.
We evaluated whether small molecule correctors could rescue four nucleotide‐binding domain 1 (NBD1) mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (A455E, S492F, ΔI507, and R560T). We first transfected Cos‐7 cells (green monkey kidney cells) with A455E, S492F, ΔI507, or R560T and created HEK‐293 (human embryonic kidney cells) cell lines stably expressing these CFTR mutations. The mutants showed lowered protein expression, instability at physiological temperature, and rapid degradation. After treatment with correctors CFFT‐002, CFFT‐003, C3, C4, and/or C18, the combination of C18+C4 showed the most correction and resulted in increased CFTR residing in the plasma membrane. We found a profound decrease in binding of CFTR to histone deacetylases (HDAC) 6 and 7 and heat shock proteins (Hsps) 27 and 40. Silencing Hsp27 or 40 rescued the mutants, but no additional amount of CFTR was rescued when both proteins were knocked down simultaneously. Thus, CFTR mutations in NBD1 can be rescued by a combination of correctors, and the treatment alters the interaction between mutated CFTR and the endoplasmic reticulum machinery.  相似文献   

20.
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号