首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP) to 5.74 ± 0.62 MPa (β-TCP/SiO2), 9.02 ± 0.55 MPa (β-TCP/MgO) and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold.  相似文献   

2.
(1) Aim: To investigate the effect of synthetic bone substitutes, α-tricalcium phosphate (α-TCP) or bi-layered biphasic calcium-phosphate (BBCP) combined with deproteinized bovine bone mineral (DBBM), on bone formation. (2) Methods: Thirty critical size defects were randomly treated with the following five different treatment modalities: (1) negative control (NC, empty), (2) DBBM, (3) α-TCP + DBBM (1:1), (4) BBCP 3%HA/97%α-TCP + DBBM (1:1), and (5) BBCP 6%HA/94%α-TCP + DBBM (1:1). The samples, at four weeks post-surgery, were investigated by micro-CT and histological analysis. (3) Results: A similar level of new bone formation was demonstrated in the DBBM with α-TCP bone substitute groups when compared to the negative control by histomorphometry. DBBM alone showed significantly lower new bone area than the negative control (p = 0.0252). In contrast to DBBM, the micro-CT analysis revealed resorption of the α-TCP + DBBM, BBCP 3%HA/97%α-TCP + DBBM and BBCP 6%HA/94%α-TCP + DBBM, as evidenced by a decrease of material density (p = 0.0083, p = 0.0050 and p = 0.0191, respectively), without changing their volume. (4) Conclusions: New bone formation was evident in all defects augmented with biomaterials, proving the osteoconductive properties of the tested material combinations. There was little impact of the HA coating degree on α-TCP in bone augmentation potential and material resorption for four weeks when mixed with DBBM.  相似文献   

3.
4.
Amyloid β (Aβ) oligomers play a key role in the progression of Alzheimer’s disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic Aβ oligomers is crucial. In this study, we report a fusion protein of cellular prion protein (PrPc) and alkaline phosphatase (ALP) from Escherichia coli as a sensing element for toxic Aβ oligomers. Since the N-terminus domain of PrPc (residue 23–111) derived from mice is known to bind to toxic Aβ oligomers in vitro, we genetically fused PrPc23–111 to ALP. The developed fusion protein, PrP–ALP, retained both the binding ability of PrPc and enzymatic activity of ALP. We showed that PrP–ALP strongly bound to high molecular weight (HMW) oligomers but showed little or no affinity toward monomers. The observation that PrP–ALP neutralized the toxic effect of Aβ oligomers indicated an interaction between PrP–ALP and toxic HMW oligomers. Based on ALP activity, we succeeded in detecting Aβ oligomers. PrP–ALP may serve as a powerful tool for detecting toxic Aβ oligomers that may be related to AD progression.  相似文献   

5.
Osteosarcoma has a poor survival rate due to relapse and metastasis. Zoledronic acid (ZOL), an anti-resorptive and anti-tumor agent, is used for treating osteosarcoma. Delivery of ZOL to the target region is difficult due to its high binding affinity to bone minerals. This study developed a novel treatment for osteosarcoma by delivering ZOL to the target region locally and sustainably. In this study, we fabricated a novel bone substitute by loading ZOL on β-tricalcium phosphate (β-TCP). The ZOL-loaded β-TCP (ZOL/β-TCP) would be expected to express the inhibitory effects via both bound-ZOL (bound to β-TCP) and free-ZOL (release from ZOL/β-TCP). To explore the ability to release ZOL from the ZOL/β-TCP, the amount of released ZOL was measured. The released profile indicates that a small amount of ZOL was released, and most of it remained on the β-TCP. Our data showed that ZOL/β-TCP could successfully express the effects of ZOL via both bound-ZOL and free-ZOL. In addition, we examined the biological effects of bound/free-ZOL using osteosarcoma and osteoclasts (target cells). The results showed that two states of ZOL (bound/free) inhibit target cell activities. As a result, ZOL/β-TCP is a promising candidate for application as a novel bone substitute.  相似文献   

6.
Whitlockite (WH) is the second most abundant inorganic component of human bone, accounting for approximately 25% of bone tissue. This study investigated the role of WH in bone remodeling and formation in a mouse spinal fusion model. Specifically, morphology and composition analysis, tests of porosity and surface area, thermogravimetric analysis, an ion-release test, and a cell viability test were conducted to analyze the properties of bone substitutes. The MagOss group received WH, Group A received 100% beta-tricalcium phosphate (β-TCP), Group B received 100% hydroxyapatite (HAp), Group C received 30% HAp/70% β-TCP, and Group D received 60% HAp/40% β-TCP (n = 10 each). All mice were sacrificed 6 weeks after implantation, and micro-CT, hematoxylin and eosin (HE) staining, and Masson trichome (MT) staining and immunohistochemistry were performed. The MagOss group showed more homogeneous and smaller grains, and nanopores (<500 nm) were found in only the MagOss group. On micro-CT, the MagOss group showed larger fusion mass and better graft incorporation into the decorticate mouse spine than other groups. In the in vivo experiment with HE staining, the MagOss group showed the highest new bone area (mean: decortication group, 9.50%; A, 15.08%; B, 15.70%; C, 14.76%; D, 14.70%; MagOss, 22.69%; p < 0.0001). In MT staining, the MagOss group demonstrated the highest new bone area (mean: decortication group, 15.62%; A, 21.41%; B, 22.86%; C, 23.07%; D, 22.47%; MagOss, 26.29%; p < 0.0001). In an immunohistochemical analysis for osteocalcin, osteopontin, and CD31, the MagOss group showed a higher positive area than other groups. WH showed comparable bone conductivity to HAp and β-TCP and increased new bone formation. WH is likely to be used as an improved bone substitute with better bone conductivity than HAp and β-TCP.  相似文献   

7.
Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.  相似文献   

8.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   

9.
Medication-related osteonecrosis of the jaw (MRONJ) is related to impaired bone healing conditions in the maxillomandibular bone region as a complication of bisphosphonate intake. Although there are several hypotheses for the onset of MRONJ symptoms, one of the possible causes is the inhibition of bone turnover and blood supply leading to bone necrosis. The optimal treatment strategy for MRONJ has not been established either. BMP-2, a member of the TGF-β superfamily, is well known for regulating bone remodeling and homeostasis prenatally and postnatally. Therefore, the objectives of this study were to evaluate whether cyclophosphamide/zoledronate (CY/ZA) induces necrosis of the bone surrounding the tooth extraction socket, and to examine the therapeutic potential of BMP-2 in combination with the hard osteoinductive biomaterial, β-tricalcium phosphate (β-TCP), in the prevention and treatment of alveolar bone loss around the tooth extraction socket in MRONJ-like mice models. First, CY/ZA was intraperitoneally administered for three weeks, and alveolar bone necrosis was evaluated before and after tooth extraction. Next, the effect of BMP-2/β-TCP was investigated in both MRONJ-like prevention and treatment models. In the prevention model, CY/ZA was continuously administered for four weeks after BMP-2/β-TCP transplantation. In the treatment model, CY/ZA administration was suspended after transplantation of BMP-2/β-TCP. The results showed that CY/ZA induced a significant decrease in the number of empty lacunae, a sign of bone necrosis, in the alveolar bone around the tooth extraction socket after tooth extraction. Histological analysis showed a significant decrease in the necrotic alveolar bone around tooth extraction sockets in the BMP-2/β-TCP transplantation group compared to the non-transplanted control group in both MRONJ-like prevention and treatment models. However, bone mineral density, determined by micro-CT analysis, was significantly higher in the BMP-2/β-TCP transplanted group than in the control group in the prevention model only. These results clarified that alveolar bone necrosis around tooth extraction sockets can be induced after surgical intervention under CY/ZA administration. In addition, transplantation of BMP-2/β-TCP reduced the necrotic alveolar bone around the tooth extraction socket. Therefore, a combination of BMP-2/β-TCP could be an alternative approach for both prevention and treatment of MRONJ-like symptoms.  相似文献   

10.
11.
In renal cell carcinoma (RCC), single members of the Wnt/β-catenin signaling cascade were recently identified to contribute to cancer progression. However, the role of Wnt1, one of the key ligands in β-catenin regulation, is currently unknown in RCC. Therefore, alterations of the Wnt1/β-catenin axis in clear cell RCC (ccRCC) were examined with regard to clinicopathology, overall survival (OS) and cancer specific survival (CSS). Corresponding ccRCCs and benign renal tissue were analyzed in 278 patients for Wnt1 and β-catenin expression by immunohistochemistry in tissue microarrays. Expression scores, including intensity and percentage of stained cells, were compared between normal kidney and ccRCCs. Data was categorized according to mean expression scores and correlated to tumor and patients’ characteristics. Survival was analyzed according to the Kaplan-Meier and log-rank test. Univariable and multivariable Cox proportional hazard regression models were used to explore the independent prognostic value of Wnt1 and β-catenin. In ccRCCs, high Wnt1 was associated with increased tumor diameter, stage and vascular invasion (p ≤ 0.02). High membranous β-catenin was associated with advanced stage, vascular invasion and tumor necrosis (p ≤ 0.01). Higher diameter, stage, node involvement, grade, vascular invasion and sarcomatoid differentiation (p ≤ 0.01) were found in patients with high cytoplasmic β-catenin. Patients with a high cytoplasmic β-catenin had a significantly reduced OS (hazard ratio (HR) 1.75) and CSS (HR 2.26), which was not independently associated with OS and CSS after adjustment in the multivariable model. Increased ccRCC aggressiveness was reflected by an altered Wnt1/β-catenin signaling. Cytoplasmic β-catenin was identified as the most promising candidate associated with unfavorable clinicopathology and impaired survival. Nevertheless, the shift of membranous β-catenin to the cytoplasm with a subsequently increased nuclear expression, as shown for other malignancies, could not be demonstrated to be present in ccRCC.  相似文献   

12.
Amyloid-β (Aβ) peptides play a key role in Alzheimer’s disease (AD), the most common type of dementia. In this study, a polysaccharide from Bletilla striata (BSP), with strong antioxidant and anti-inflammatory properties, was extracted using a low-temperature method and tested for its efficacy against AD, in vitro using N2a and BV-2 cells, and in vivo using an AD rat model. The characterization of the extracted BSP for its molecular structure and functional groups demonstrated the effectiveness of the modified method for retaining its bioactivity. In vitro, BSP reduced by 20% reactive oxygen species (ROS) levels in N2a cells (p = 0.0082) and the expression levels of inflammation-related genes by 3-fold TNF-α (p = 0.0048), 4-fold IL-6 (p = 0.0019), and 2.5-fold IL-10 (p = 0.0212) in BV-2 cells treated with Aβ fibrils. In vivo, BSP recovered learning memory, ameliorated morphological damage in the hippocampus and cortex, and reduced the expression of the β-secretase protein in AlCl3-induced AD rats. Collectively, these findings demonstrated the efficacy of BSP for preventing and alleviating the effects of AD.  相似文献   

13.
Aluminum (Al) excess and hypercholesterinaemia are established risks of Alzheimer’s disease (AD). The aim of this study was to establish an AD-resembling hypercholesterinaemic animal model—with the involvement of 8 week and 48 week-old Fischer-344 rats—by Al administration for the safe and rapid verification of β-amyloid-targeted positron emission tomography (PET) radiopharmaceuticals. Measurement of lipid parameters and β-amyloid–affine [11C]C-Pittsburgh Compound B ([11C]C-PIB) PET examinations were performed. Compared with the control, the significantly elevated cholesterol and LDL levels of the rats receiving the cholesterol-rich diet support the development of hypercholesterinaemia (p ≤ 0.01). In the older cohort, a notably increased age-related radiopharmaceutical accumulation was registered compared to in the young (p ≤ 0.05; p ≤ 0.01). A monotherapy-induced slight elevation of mean standardised uptake values (SUVmean) was statistically not significant; however, adult rats administered a combined diet expressed remarkable SUVmean increment compared to the adult control (SUVmean: from 0.78 ± 0.16 to 1.99 ± 0.28). One and two months after restoration to normal diet, the cerebral [11C]C-PIB accumulation of AD-mimicking animals decreased by half and a third, respectively, to the baseline value. The proposed in vivo Al-induced AD-resembling animal system seems to be adequate for the understanding of AD neuropathology and future drug testing and radiopharmaceutical development.  相似文献   

14.
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) involvement in Alzheimer’s disease (AD) is poorly investigated. We evaluated the in vitro PCSK9 modulation of astrocyte cholesterol metabolism and neuronal cholesterol supplying, which is fundamental for neuronal functions. Moreover, we investigated PCSK9 neurotoxic effects. In human astrocytoma cells, PCSK9 reduced cholesterol content (−20%; p < 0.05), with a greater effect in presence of beta amyloid peptide (Aβ) (−37%; p < 0.01). PCSK9 increased cholesterol synthesis and reduced the uptake of apoE-HDL-derived cholesterol (−36%; p < 0.0001), as well as the LDL receptor (LDLR) and the apoE receptor 2 (ApoER2) expression (−66% and −31%, respectively; p < 0.01). PCSK9 did not modulate ABCA1- and ABCG1-cholesterol efflux, ABCA1 levels, or membrane cholesterol. Conversely, ABCA1 expression and activity, as well as membrane cholesterol, were reduced by Aβ (p < 0.05). In human neuronal cells, PCSK9 reduced apoE-HDL-derived cholesterol uptake (−41%; p < 0.001) and LDLR/apoER2 expression (p < 0.05). Reduced cholesterol internalization occurred also in PCSK9-overexpressing neurons exposed to an astrocyte-conditioned medium (−39%; p < 0.001). PCSK9 reduced neuronal cholesterol content overall (−29%; p < 0.05) and increased the Aβ-induced neurotoxicity (p < 0.0001). Our data revealed an interfering effect of PCSK9, in cooperation with Aβ, on brain cholesterol metabolism leading to neuronal cholesterol reduction, a potentially deleterious effect. PCSK9 also exerted a neurotoxic effect, and thus represents a potential pharmacological target in AD.  相似文献   

15.
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.  相似文献   

16.
Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.  相似文献   

17.
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.  相似文献   

18.
Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective effect against neurodegenerative diseases, e.g., Parkinson’s disease (PD). Although the etiology of PD is still unclear, neuroinflammation may play an important role in causing dopaminergic neuron loss, which is a pathological hallmark of PD. However, glial cell activation has a close relationship with neuroinflammation. Thus, this study aimed to investigate the anti-neuroinflammatory and neuroprotective effects of EA on lipopolysaccharide (LPS)-induced glial cell activation and neural damage in vitro and in vivo. For the in vitro experiments, glial cells, BV-2 microglial cells and CTX TNA2 astrocytes were pretreated with EA and then stimulated with LPS and/or IFN-γ. The expression of proinflammatory factors in the cells and culture medium was analyzed. In addition, differentiated neuro-2a (N2a) cells were pretreated with EA or HEM and then stimulated with LPS-treated BV-2 conditioned medium (CM). The cell viability and the amount of tyrosine hydroxylase (TH) and mitogen-activated protein kinases (MAPKs) were analyzed. In vivo, rats were given EA or HEM by oral gavage prior to injection of LPS into the substantia nigra (SN). Motor coordination of the rats and the expression of proinflammatory mediators in the midbrain were analyzed. EA pretreatment prevented LPS-induced iNOS expression and NO production in BV-2 cells and TNF-α expression in CTX TNA2 cells. In addition, both EA and HEM pretreatment significantly increased cell viability and TH expression and suppressed the phosphorylation of JNK and NF- κB in differentiated N2a cells treated with CM. In vivo, both EA and HEM significantly improved motor dysfunction in the rotarod test and the amphetamine-induced rotation test and reduced the expression of TNF-α, IL-1β and iNOS in the midbrain of rats intranigrally injected with LPS. The results demonstrate that EA ameliorates LPS-induced neuroinflammation and has neuroprotective properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号