首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《煤炭技术》2017,(1):1-3
针对寨崖底矿煤柱下回采巷道失稳问题,通过理论分析、数值模拟和现场实测等方法,分析了寨崖底矿煤柱下煤层巷道的破坏机理。得出了上煤层工作面回采后,遗留煤柱底板应力分布规律。发现煤柱下煤层高应力集中区围岩受工作面采动动载高应力扰动出现垂直应力峰值增大、应力集中区范围增加、非对称应力场,是此类巷道大变形破坏的根本原因,且预测采动影响范围为工作面前方60 m至后方130 m。  相似文献   

2.
应用计算机模拟、现场实测和理论分析综合研究方法,分析了煤层群开采条件下的张集煤矿1113(1)工作面轨道巷多次扰动失稳机理,并对煤层群邻近层多工作面回采顺序进行了数值计算,再现了不同开采顺序下的底板动压回采巷道围岩力学环境。研究表明:目前采用的邻近层交错同采方式,1113(1)工作面轨道巷失稳的力学本质为,本工作面回采活化了已破坏的上覆层间似连续-非连续-散体结构,加剧了工作面前方受多重采动影响的轨道巷浅部高应力环境下的大范围持续强变形,突出表现为巷道底鼓强烈;回采顺序显著影响煤层群回采巷道围岩稳定性,下行开采下伏回采巷道受扰动程度最低,巷道变形及围岩破坏范围最小;邻近层对应同采,下伏工作面轨道巷受上覆工作面底板聚压影响区高应力、巷道开挖、本工作面开采扰动等多重因素叠加作用,巷道围岩破坏范围最大、变形最严重。煤层群开采采区设计中应尽量采用下行开采,同时避免或减少巷道受多次采动影响。  相似文献   

3.
以汾源矿5#煤底板施工注浆钻孔资料为基础,分析了汾源矿奥灰原始导高发育情况及其对煤层开采的影响,得出汾源矿奥灰上马家沟组顶面存在9.1~49.25 m的原始导高;5-101首采面部分区域奥灰原始导高可发育至底板破坏带以上,首采工作面回采存在一定的奥灰突水危险,对5-101工作面进行底板隔水层注浆加固及含水层改造可起到防治水作用,并且对发育有奥灰原始导高的矿井防治水工作也有一定的指导意义。  相似文献   

4.
超千米深部矿井采动应力显现规律   总被引:1,自引:0,他引:1       下载免费PDF全文
我国浅部煤炭资源逐渐耗竭,开采深度逐渐进入1 000~2 000 m水平,常常伴有大量的工程灾害,其根本原因是深部采动应力场的显现规律与响应规律不清楚。以平煤股份十二矿超千米深己15-31030工作面为研究基地,开展了不同开采速率下超千米煤层采动应力显现规律及响应特征研究,并集成"锚杆应力-钻孔应力-钻孔裂隙窥视"等研究手段进行现场原位测试。结果表明:随着采煤工作面的不断推进,超前支承压力峰值先是交替上升,回采距离超过80 m时,由于埋深较大导致支承压力峰值增长变缓并最终在85 MPa左右波动,应力集中系数达3. 3,高于一般浅部工作面集中系数;同时上覆岩层在采动影响下形成垮落带、断裂带、弯曲下沉带的"三带"结构;其次,随着开采速度增大,超前支承压力峰值逐渐增大,峰值点距采煤工作面的距离相应减小,基本顶断裂形成的岩块长度也越长;工作面支架压力随着采煤工作面持续推进呈现出周期上升的趋势。在采动影响下,由于扰动后应力重分布及能量释放,锚杆应力呈现出先增长后降低的趋势,得出工作面采动影响范围大约为85 m,钻孔应力距采煤工作面75 m左右时进入采动影响范围开始上升,而后进入支承压力降低区,应力开始出现小幅度下降;随着采煤工作面不断推进,强烈的开采扰动导致裂隙不断发育,裂隙逐渐发育成纵横交错的破碎带,并向顶板上方发展。  相似文献   

5.
采动条件下厚煤层底板破坏规律动态监测及数值模拟研究   总被引:2,自引:0,他引:2  
以某矿综放工作面的开采实际为背景,采用现场应变测试和数值模拟相互验证的方法,对采动条件下厚煤层底板破坏深度进行综合对比研究。现场实测表明,某矿综放工作面煤层底板岩体破坏深度介于13~16 m之间,采动矿压对底板的影响具有较远距离的"超前"显现和"滞后"延续的特点,(超前、滞后距)表现有由浅及深相应减小的总体特征;数值模拟研究表明,工作面底板下0~16 m为底板破坏影响带,即底板最大破坏深度为16 m,16~36 m岩层受煤层开采影响较小,再往下有接近原岩应力的趋势;综合分析得出该面采动底板变形破坏深度为16 m,研究结果为我国类似条件下煤炭资源安全开采及矿井水害防治提供参考依据。  相似文献   

6.
为确保带压开采深部山青工作面实现安全回采,对牛儿庄矿56805工作面的水文地质条件进行了分析,得出大青灰岩含水层和奥灰含水层是影响煤层开采的主要含水层,二者之间自然状态下无水力联系。通过对开采条件下煤层底板阻水性能的分析,发现隔水层阻水能力受采动影响较小,基本和自然状态下类似。最后利用突水系数法对工作面回采安全性进行评价,评价结果显示工作面基本满足安全开采要求工作面可以安全回采。  相似文献   

7.
付翔  杨勇  史文豹 《建井技术》2022,43(1):30-34
为探究祁东矿8231工作面采后底板破坏影响范围,采用数值模拟及地质雷达探测法,对8231工作面底板破坏特征进行研究.结果表明,工作面底板破坏起始于工作面前方一定范围,随着工作面推进,煤层底板破坏深度不断增加,同时,回采巷道受掘进和采动的双重扰动,其底板破坏范围稍大于工作面底板破坏范围;8231工作面底板破坏深度数值模拟...  相似文献   

8.
周建军 《中州煤炭》2019,(6):117-119,123
为了分析首采层开采对底板煤层的影响规律,采用理论分析,分析了首采层开采对煤层破坏范围,研究了首采层开采对煤层工作面掘进和回采的影响,然后钻孔验证了1901运输巷反掘联络巷26.3 m打钻地质成果。研究得出:首采层工作面回采对下部9号煤层工作面产生影响为走向方向上内错19.8 m,倾向方向上内错8.42 m;首采层工作面回采对下部7号煤层影响范围为工作面范围内走向方向上内错9.42 m,倾向方向上内错3.93 m。研究为今后底板煤层的设计工作提出理论基础。  相似文献   

9.
郭国政 《煤炭工程》2007,(12):61-63
随着矿井开采深度的增加,古汉山矿地应力越来越大,工作面回采时煤层底板破坏程度也在增加,煤层底板L8灰岩含水层水压越来越高,造成煤层底板加固的注浆压力不断增大,这样势必会引起在煤层底板注浆加固时破坏煤层底板与L8灰岩之间的隔水层。从而引起回采工作面在回采时底板突水。为防止煤层底板加固时破坏煤层底板与L8灰岩之间的隔水层,古汉山矿11031东回采工作面煤层底板加固时采用控制注浆压力的措施,既加固了含水层又保护了隔水层,效果很好。  相似文献   

10.
为了研究煤层深部开采底板采动破坏特征及与浅部开采的差异及底板突水机理,以淮北矿区下组煤底板为研究对象,建立了3种不同采深的底板突水模型。基于FISH语言对FLAC3D软件进行二次开发,对流固耦合条件下不同深度煤层采动底板破坏特征进行了综合分析与对比。研究结果表明:深部条件下煤层采动底板破坏形态与浅部明显不同,深部高地应力及高承压水耦合作用下,含水层顶部发育原位张裂带,且在采动影响下,会进一步出现递进导升现象,而浅部开采时无此现象;当采动破坏带与深部递进导升带沟通时,发生底板突水事故,揭示了矿井深部煤层底板原位张裂隙产生—与承压含水层导通—原位导升带发育—采动破坏带与递进导升带沟通这一突水机理。  相似文献   

11.
煤层底板承压水对工作面安全回采影响很大,为研究带压开采工作面长度对底板破坏深度的影响,以某矿生产条件为例,基于弹性力学半平面体理论,建立支承压力与承压水压力耦合作用下底板应力分布模型,计算得到底板应力分布状态解析解,利用Mathematica软件进行数据处理,并将应力分布图像化。取得以下研究结果:带压开采底板破坏深度与工作面长度正相关,最大破坏深度出现在工作面倾向中部;该矿底板允许最大破坏深度为13m,工作面长度应不大于110m。该模型为带压开采合理工作面长度的确定提供了参考依据。  相似文献   

12.
董世卓 《煤炭技术》2019,(2):114-116
巨野煤田某矿4301工作面埋深大于800 m,煤层厚度大,为了研究回采过程中水害影响,首先分析工作面顶板沉积组合结构,采用可控源音频大地电磁法勘探顶板含水层,然后用UDEC软件进行覆岩变形破坏数值模拟分析。得出工作面导水裂隙带最大发育高度约100 m,裂采比11.12,导水裂隙不会波及基岩顶部砂含5,经疏放水后可进行安全回采。  相似文献   

13.
小回沟矿2201首采工作面为近距离煤层群开采工作面,“下三带”破坏范围和深度情况会影响2201工作面回采期间瓦斯涌出。为解决此问题,采用相似材料模拟和数值模拟以及现场工业试验,确定了2201工作面底板垂深0~9.5 m为采动破坏区域,9.5~18.8 m为裂隙发育区域,大于18.8 m为完整良好区域。这为2201工作面瓦斯治理提供了依据。  相似文献   

14.
为了分析煤层开采对第四系松散含水层的影响,选择潞安矿区漳村矿为试验现场,通过浅部至深部煤层开采项板导水裂隙发育高度的理论分析、数值模拟和实际观测资料对比,研究采高6m,采动导水裂隙发育规律及对松散含水层的影响.结果表明:煤层埋深小于110 m区段,导水裂隙可突破第四系底部黏土隔水层而发育至第四系松散含水层,并对该含水层造成破坏;煤层埋深介于110~190 m区段,导水裂隙仅发育至基岩风氧化带,风化裂隙水可进入采场,对第四系底部松散含水层水影响较小;煤层埋深大于190 m区段,采动导水裂隙发育限制在完整基岩内,仅将顶板砂岩裂隙水引入采场.据此分析,漳村矿对采高6m、埋深大于190 m的中深部煤层的开采对第四系松散含水层几乎无影响.  相似文献   

15.
针对新疆某矿含水层下"三软"煤层首采工作面可能存在的顶板垮落沟通含水层造成工作面突水灾害的问题,通过现场钻孔冲洗液漏失量观测、钻孔电视探测和岩芯资料,确定了首采工作面覆岩破坏"两带"分布规律。在此基础上结合工作面矿压观测和UDEC数值模拟,分析了覆岩破坏发展与矿压显现的关系。研究表明,B10煤层B1003W01工作面的"两带"垮采比为2.75~2.81,垮落带高度18.7~19.7m,裂采比为11.39~13.59,导水裂缝带高度为77.4~82.26m;首采工作面周期来压步距为10.8~14.7m,巷道变形影响区域为超前工作面50m,煤体应力开始变化在超前10m范围,峰值距离煤壁2m位置。首采工作面在"三软"条件下,"两带"发育高度达到含水层,周期来压步距短对工作面形成较频繁的动载作用,以及煤体应力峰值离煤壁近的综合作用是造成工作面容易出现淋水,发生煤壁片帮和架前冒顶的原因。  相似文献   

16.
为了探究近距离煤层同采时上煤层对下煤层的影响,以芦沟煤矿平均间距5.32 m的10号和11号两近距离煤层为研究对象,基于错距理论和采场岩层断裂运移规律,建立了底板受力模型,对上煤层回采后地板应力分布、破坏范围和合理的布置方式、错距进行了研究。结果表明:上煤层工作面采场的稳压区内顶板稳定,没有冲击动压作用,安全性好,是合理的布置位置。在上煤层开采超前支撑压力和支架支撑作用下,下层煤工作面前方产生集中应力,使得煤层和顶板发生裂隙的扩展和联合,最终发生破坏。10号煤开采时,对底板的扰动破坏长度为40.95 m,破坏最大深度为10.97 m,即工作面布置错距应该大于40.95 m。现场工程应用,两工作面错距为42 m,实测得到液压支架载荷均衡,矿压显现缓和,说明布置合理。  相似文献   

17.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

18.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3 D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

19.
阳煤二矿15#煤层存在带压开采的问题,为确定其带压开采的安全性和可行性,采用水文钻孔勘查、理论分析计算等方法研究表明,奥陶系灰岩含水层水头压力为1.6MPa,15#煤层和奥灰水间隔水层厚度为35.0m,隔水性能良好,工作面回采期间底板塑性破坏深度为11.6m,突水系数为0.085MPa/m,突水系数小于0.1MPa/m,极限水压为5.6MPa,远大于实际水压,在完整底板条件下工作面能够安全的进行回采。  相似文献   

20.
庞庞塔煤矿9~#煤层工作面为带压开采,以9-101首采工作面为背景,采用极限水压理论及突水系数法探究底板突水的危险性,模拟分析了工作面回采期间底板塑性破坏的深度及底板隔水层注浆加固效果。结果表明,正常条件下底板塑性破坏深度为27 m,底板存在较大的突水危险,注浆后底板破坏深度减小为10 m,奥灰含水层突水的危险性解除。可见,通过底板注浆改造,能够保障庞庞塔矿9-101工作面的安全回采。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号