首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-κB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-κB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-κB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-κB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-κB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-κB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.  相似文献   

2.
Angiotensin receptor neprilysin inhibitor (ARNI) treatment reduces functional mitral regurgitation (MR) to a greater extent than angiotensin receptor blocker (ARB) treatment alone, but the mechanism is unclear. We evaluated the mechanisms of how ARNI has an effect on functional MR. After inducing functional MR by left circumflex coronary artery occlusion, male Sprague Dawley rats (n = 31) were randomly assigned to receive the ARNI LCZ696, the ARB valsartan, or corn oil only (MR control). Excised mitral leaflets and left ventricle (LV) were analyzed, and valvular endothelial cells were evaluated focusing on molecular changes. LCZ696 significantly attenuated LV dilatation after 6 weeks when compared with the control group (LV end-diastolic volume, 461.3 ± 13.8 µL versus 525.1 ± 23.6 µL; p < 0.05), while valsartan did not (471.2 ± 8.9 µL; p > 0.05 to control). Histopathological analysis of mitral leaflets showed that LCZ696 strongly reduced fibrotic thickness compared to the control group (28.2 ± 2.7 µm vs. 48.8 ± 7.5 µm; p < 0.05). Transforming growth factor-β and downstream phosphorylated extracellular-signal regulated kinase were also significantly lower in the LCZ696 group. Consequently, excessive endothelial-to-mesenchymal transition (EndoMT) was mitigated in the LCZ696 group compared to the control group and leaflet area was higher (11%) in the LCZ696 group than in the valsartan group. Finally, the MR extent was significantly lower in the LCZ696 group and functional improvement was observed. In conclusion, neprilysin inhibitor has positive effects on LV reverse remodeling and also attenuates fibrosis in MV leaflets and restores adaptive growth by directly modulating EndoMT.  相似文献   

3.
To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway.  相似文献   

4.
5.
Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.  相似文献   

6.
Mangiferin (MF), a xanthone that extensively exists in many herbal medicines, processes significant activities of anti-inflammation and immunomodulation. The potential regulatory effect and mechanism of mangiferin on cell pyroptosis remain unclear. In this study, mouse bone-marrow-derived macrophages (BMDMs) were stimulated with 1 μg/mL LPS to induce cell pyroptosis and were treated with 10, 50, or 100 μg/mL MF for regulating pyroptosis. The cell supernatants TNF-α, IL-1β, IL-6, and IL-18 were detected by enzyme-linked immunosorbent assay (ELISA); gene expression of TNF-α, IL-1β, IL-6, IL-18, Caspase-1, Caspase-11, and gasdermin D (GSDMD) was tested by real-time polymerase chain reaction (RT-PCR), and protein expression levels of apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), nod-like receptor protein-3 (NLRP3), caspase-1, caspase-11, GSDMD, and NF-κB were detected by Western blot. The results showed that MF significantly inhibited the secretion and gene expression of TNF-α, IL-6, IL-1β, and IL-18 that were elevated by LPS. Moreover, MF significantly suppressed the gene expression of Caspase-1, Caspase-11, and GSDMD, and decreased the protein levels of NLRP3, caspase-1, caspase-11, full-length GSDMD (GSDMD-FL), GSDMD N-terminal (GSDMD-N), and NF-κB. In conclusion, mangiferin has a multi-target regulating effect on inflammation and pyroptosis by inhibiting the NF-κB pathway, suppressing inflammatory caspase-mediated pyroptosis cascades, and reducing GSDMD cleavage in LPS-induced BMDMs.  相似文献   

7.
As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.  相似文献   

8.
The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis.  相似文献   

9.
Ischemia/reperfusion injury (IRI) in the kidney is the most common cause of acute renal dysfunction through different cell damage mechanisms. This study aimed to investigate, on molecular basics for the first time, the effect of pantoprazole on renal IRI in rats. Different biochemical parameters and oxidative stress markers were assessed. ELISA was used to estimate proinflammatory cytokines. qRT-PCR and western blot were used to investigate the gene and protein expression. Renal histopathological examination was also performed. IRI resulted in tissue damage, elevation of serum levels of creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, IL-1β, up-regulation of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it up-regulated the expression of the Bax gene and down-regulated the expression of the Bcl-2 gene. Treatment of the injured rats with pantoprazole, either single dose or multiple doses, significantly alleviated IRI-induced biochemical and histopathological changes, attenuated the levels of proinflammatory cytokines, down-regulated the expression of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins, and the Bax gene, and up-regulated Bcl-2 gene expression. Moreover, treatment with pantoprazole multiple doses has an ameliorative effect that is greater than pantoprazole single-dose. In conclusion, pantoprazole diminished renal IRI via suppression of apoptosis, attenuation of the pro-inflammatory cytokines’ levels, and inhibition of the intracellular signaling pathway MAPK (ERK1/2, JNK, p38)–NF-κB.  相似文献   

10.
11.
Caffeine elicits protective effects against liver diseases, such as NASH; however, its mechanism of action involving the pyrin domain-containing-3 (NLRP3) inflammasome signaling pathway remains to be elucidated. This study aimed to evaluate the effect of caffeine on the NLRP3 inflammasome signaling pathway in a rat model of NASH. NASH was induced by feeding rats a high-fat, -sucrose, and -cholesterol diet (HFSCD) for 15 weeks along with a weekly low dose (400 mg/kg, i.p.) of CCl4. Caffeine was administered at 50 mg/kg p.o. The effects of HFSCD+CCl4 and caffeine on the liver were evaluated using biochemical, ultrastructural, histological, and molecular biological approaches. The HFSCD+CCl4-treated rats showed fat accumulation in the liver, elevated levels of inflammatory mediators, NLRP3 inflammasome activation, antioxidant dysregulation, and liver fibrosis. Caffeine reduced necrosis, cholestasis, oxidative stress, and fibrosis. Caffeine exhibited anti-inflammatory effects by attenuating NLRP3 inflammasome activation. Moreover, caffeine prevented increases in toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) protein levels and mitigated the phosphorylation of mitogen-activated protein kinase (MAPK). Importantly, caffeine prevented the activation of hepatic stellate cells. This study is the first to report that caffeine ameliorates NASH by inhibiting NLRP3 inflammasome activation through the suppression of the TLR4/MAPK/NF-κB signaling pathway.  相似文献   

12.
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.  相似文献   

13.
14.
Nonsteroidal anti-inflammatory drugs (NSAIDs) belong to a class of universally and commonly used anti-inflammatory analgesics worldwide. A diversity of drawbacks of NSAIDs have been reported including cellular oxidative stress, which in turn triggers the accumulation of unfolded proteins, enhancing endoplasmic reticulum stress, and finally resulting in renal cell damage. Cordyceps cicadae (CC) has been used as a traditional medicine for improving renal function via its anti-inflammatory effects. N6-(2-hydroxyethyl)adenosine (HEA), a physiologically active compound, has been reported from CC mycelia (CCM) with anti-inflammatory effects. We hypothesize that HEA could protect human proximal tubular cells (HK–2) from NSAID-mediated effects on differential gene expression at the mRNA and protein levels. To verify this, we first isolated HEA from CCM using Sephadex® LH–20 column chromatography. The MTT assay revealed HEA to be nontoxic up to 100 µM toward HK–2 cells. The HK–2 cells were pretreated with HEA (10–20 µM) and then insulted with the NSAIDs diclofenac (DCF, 200 µM) and meloxicam (MXC, 400 µM) for 24 h. HEA (20 µM) effectively prevented ER stress by attenuating ROS production (p < 0.001) and gene expression of ATF–6, PERK, IRE1α, CDCFHOP, IL1β, and NFκB within 24 h. Moreover, HEA reversed the increase of GRP78 and CHOP protein expression levels induced by DCF and MXC, and restored the ER homeostasis. These results demonstrated that HEA treatments effectively protect against DCF- and MXC-induced ER stress damage in human proximal tubular cells through regulation of the GRP78/ATF6/PERK/IRE1α/CHOP pathway.  相似文献   

15.
Naringenin is a major flavanone found in grapes, tangelos, blood oranges, lemons, pummelo, and tangerines. It is known to have anti-inflammatory, antioxidant, anticancer, antimutagenic, antifibrogenic, and antiatherogenic pharmacological properties. This study aims to investigate the anti-inflammatory effects of naringenin in ethanol-induced gastric damage in vivo and ethanol-stimulated KATO III cells in vitro. Our results showed that pretreatment with naringenin significantly protected mice from ethanol-induced hemorrhagic damage, epithelial cell loss, and edema with leucocytes. It reduced gastric ulcers (GU) by suppressing ethanol-induced nuclear factor-κB (NF-κB) activity and decreasing the levels of nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and myeloperoxidase (MPO). In addition, pretreatment with naringenin might inhibit the secretion of TNF-α, IL-6, and IL-8, as well as the proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via the suppression of NF-κB and mitogen-activated protein kinase (MAPK) signaling in ethanol-stimulated stomach epithelial KATO III cells. Together, the results of this study highlight the gastroprotective effect of naringenin in GU of mice by inhibiting gastric secretion and acidity, reducing inflammation and oxidative stress, suppressing NF-κB activity, and restoring the histological architecture. These findings suggested that naringenin has therapeutic potential in the alleviation of ethanol-induced GU.  相似文献   

16.
Salivary levels of interleukin-8 (IL-8) are elevated in patients with periodontitis. Caffeic acid phenethyl ester (CAPE) improves the periodontal status in subjects. However, whether CAPE can reduce IL-8 expression is unclear. We collected saliva to determine proinflammatory cytokine levels and used subgingival calculus and surrounding tissues from patients with periodontitis for oral microbiota analysis via 16s ribosomal RNA gene sequencing. THP-1 cells were stimulated with sterile-filtered saliva from patients, and target gene/protein expression was assessed. IL-8 mRNA expression was analyzed in saliva-stimulated THP-1 cells treated with CAPE and the heme oxygenase-1 (HO-1) inhibitor tin-protoporphyrin (SnPP). In 72 symptomatic individuals, IL-8 was correlated with periodontal inflammation (bleeding on probing, r = 0.45; p < 0.001) and disease severity (bleeding on probing, r = 0.45; p < 0.001) but not with the four oral microbiota species tested. Reduced salivary IL-8 secretion was correlated with effective periodontitis treatment (r = 0.37, p = 0.0013). In THP-1 cells, saliva treatment induced high IL-8 expression and IKK2 and nuclear factor-κB (NF-κB) phosphorylation. However, the IKK inhibitor BMS-345541, NF-κB inhibitor BAY 11-7082, and CAPE attenuated saliva-induced IL-8 expression. CAPE induced HO-1 expression and inhibited IKK2, IκBα, and NF-κB phosphorylation. Blocking HO-1 decreased the anti-inflammatory activity of CAPE. The targeted suppression of IL-8 production using CAPE reduces inflammation and periodontitis.  相似文献   

17.
18.
Adipose tissue expansion is strongly associated with increased adipose macrophage infiltration and adipocyte-derived pro-inflammatory cytokines, contributing to obesity-associated low-grade inflammation. Individuals with vitamin D deficiency have an increased prevalence of obesity and increased circulating inflammatory cytokines. However, the effect of vitamin D supplementation on obesity-induced inflammation remains controversial. Male C57BL/6J mice received a low-fat (10% fat) or high-fat (HF, 60% fat diet) containing 1000 IU vitamin D/kg diet, or HF supplemented with 10,000 IU vitamin D/kg diet for 16 weeks (n = 9/group). Vitamin D supplementation did not decrease HF-increased body weight but attenuated obesity-induced adipose hypertrophy and macrophage recruitment as demonstrated by the number of crown-like structures. Vitamin D supplementation significantly reduced the mRNA expression of CD11c, CD68, and iNOS, specific for inflammatory M1-like macrophages, and decreased serum levels of NO. In addition, significant reductions in pro-inflammatory gene expression of IL-6, MCP-1, and TNFα and mRNA levels of ASC-1, CASP1, and IL-1β involved in NLRP3 inflammasome were found in obese mice supplemented with vitamin D. Vitamin D supplementation significantly increased obesity-decreased AMPK activity and suppressed HF-increased NF-κB phosphorylation in adipose tissue from obese mice. These observed beneficial effects of vitamin D supplementation on adipose tissue expansion, macrophage recruitment, and inflammation might be related to AMPK/NF-κB signaling.  相似文献   

19.
Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effect of QC. We found that ADMA treatment activated the endoplasmic reticulum (ER) stress sensor proteins phosphorylated protein kinase RNA-activated-like ER kinase (PERK) and inositol requiring-1α (IRE1), which correspondingly induced C/EBP homologous protein (CHOP) expression and phosphorylated c-Jun N-terminal kinase (JNK) phosphorylation in glomerular endothelial cells (GEnCs). Following this, ADMA promoted ER stress-induced apoptosis and resulted in transforming growth factor β (TGF-β) expression in GEnCs. SP600125, an inhibitor of JNK, and CHOP siRNA protected against ADMA-induced cell apoptosis and TGF-β expression. QC prevented ADMA-induced PERK and IRE1 apoptotic ER stress pathway activation. Also, ADMA-induced GEnCs apoptosis and TGF-β expression was reduced by QC. Overexpression of CHOP blocked QC-mediated protection from apoptosis in ER stressed cells. Overall, these observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway. In addition, drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号