首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the literature, burns are understood as traumatic events accompanied by increased morbidity and mortality among affected patients. Their characteristic feature is the formation of swelling and redness at the site of the burn, which indicates the development of inflammation. This reaction is not only important in the healing process of wounds but is also responsible for stimulating the patient’s innate immune system. As a result of the loss of the protective ability of the epidermis, microbes which include bacteria, fungi, and viruses have easier access to the system, which can result in infections. However, the patient is still able to overcome the infections that occur through a cascade of cytokines and growth factors stimulated by inflammation. Long-term inflammation also has negative consequences for the body, which may result in multi-organ failure or lead to fibrosis and scarring of the skin. The innate immune response to burns is not only immediate, but also severe and prolonged, and some people with burn shock may also experience immunosuppression accompanied by an increased susceptibility to fatal infections. This immunosuppression includes apoptosis-induced lymphopenia, decreased interleukin 2 (IL-2) secretion, neutrophil storm, impaired phagocytosis, and decreased monocyte human leukocyte antigen-DR. This is why it is important to understand how the immune system works in people with burns and during infections of wounds by microorganisms. The aim of this study was to characterize the molecular pathways of cell signaling of the immune system of people affected by burns, taking into account the role of microbial infections.  相似文献   

2.
结核菌H37Ra在小鼠体内诱导的免疫应答   总被引:1,自引:0,他引:1  
目的检测结核菌H37Ra免疫小鼠后产生的特异性细胞免疫和体液免疫应答水平。方法将BALB/c小鼠随机分为H37Ra组、BCG组和生理盐水(NS)组,分别进行免疫,免疫8周后处死小鼠,分离血清,ELISA间接法测定血清特异性抗PPDIgG抗体的水平,流式细胞分析仪检测脾脏T淋巴细胞亚群的变化。脾淋巴细胞经体外培养、PPD刺激后,MTT法检测脾淋巴细胞的刺激指数,ELISA法检测培养上清液中IFN-γ和IL-4的水平。结果H37Ra免疫小鼠血清中抗PPDIgG抗体、脾脏CD3+T细胞和CD4+T细胞的百分率、脾淋巴细胞刺激指数、IFN-γ和IL-4水平均显著高于NS对照组,但与BCG组差异无显著意义。各组间脾脏CD8+T细胞、CD4+T/CD8+T比值差异均无显著意义。结论H37Ra免疫小鼠后,可以产生特异性的细胞免疫和体液免疫应答,有望成为结核疫苗的候选抗原。  相似文献   

3.
Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.  相似文献   

4.
Carbon nanotubes (CNTs) are carbon allotropes consisting of one, two, or more concentric rolled graphene layers. These can intrinsically regulate immunity by activating the innate immune system. Mannose receptors (MR), a subgroup of the C-type lectin superfamily, are abundantly expressed on macrophages and dendritic cells. These play a crucial role in identifying pathogens, presenting antigens, and maintaining internal environmental stability. Utilizing the specific recognition between mannose and antigen-presenting cells (APC) surface mannose receptors, the antigen-carrying capacity of mannose-modified CNTs can be improved. Accordingly, here, we synthesized the mannose-modified carbon nanotubes (M-MWCNT) and evaluated them as an antigen delivery system through a series of in vitro and in vivo experiments. In vitro, M-MWCNT carrying large amounts of OVA were rapidly phagocytized by macrophages and promoted macrophage proliferation to facilitate cytokines (IL-1β, IL-6) secretion. In vivo, in mice, M-MWCNT induced the maturation of dendritic cells and increased the levels of antigen-specific antibodies (IgG, IgG1, IgG2a, IgG2b), and cytokines (IFN-γ, IL-6). Taken together, M-MWCNT could induce both humoral and cellular immune responses and thereby can be utilized as an efficient antigen-targeted delivery system.  相似文献   

5.
The fibrinolytic system provides an essential means to remove fibrin deposits and blood clots. The actual protease responsible for this is plasmin, formed from its precursor, plasminogen. Fibrin is heralded as it most renowned substrate but for many years plasmin has been known to cleave many other substrates, and to also activate other proteolytic systems. Recent clinical studies have shown that the promotion of plasmin can lead to an immunosuppressed phenotype, in part via its ability to modulate cytokine expression. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allows plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, a multitude of pathogens can also express their own plasminogen activators, or contain surface proteins that provide binding sites host plasminogen. Plasmin formed under these circumstances also empowers these pathogens to modulate host immune defense mechanisms. Phylogenetic studies have revealed that the plasminogen activating system predates the appearance of fibrin, indicating that plasmin did not evolve as a fibrinolytic protease but perhaps has its roots as an immune modifying protease. While its fibrin removing capacity became apparent in lower vertebrates these primitive under-appreciated immune modifying functions still remain and are now becoming more recognised.  相似文献   

6.
Phenolic glycolipids (PGLs) are virulence factors present in the cell walls of many pathogenic mycobacteria. PGLs have been implicated in various aspects of mycobacterial disease, but there are limited structure–activity data available for these molecules. We report here the preparation of seven synthetic PGL analogues, differing from the native compounds in the replacement of the complex phenolic lipid moiety with a p‐methoxyphenyl group. The ability of these compounds to stimulate or inhibit the production of cytokines (TNF‐α, IL‐1β, IL‐6, MCP‐1) and nitric oxide (NO) was then evaluated by ELISA‐based assays. None of the compounds stimulated the production of these biological signalling molecules. In contrast, they each displayed concentration‐dependent inhibitory activity, related to the methylation pattern of the molecule and mediated by Toll‐like receptor 2. Additional studies revealed that native PGL‐I from Mycobacterium leprae and a synthetic PGL‐I analogue containing a simplified lipid domain had enhanced inhibitory activities relative to the corresponding analogues containing the p‐methoxyphenyl aglycone; however, the natural lipid phenolthiocerol was only weakly active. These studies reveal that synthetic molecules of this type can be used as probes for PGL function. Moreover, their ease of synthesis relative to the natural glycolipids, as well as their more favourable aqueous solubility, should allow for more thorough structure–activity relationship studies.  相似文献   

7.
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an ‘MRT-induced immune effect’. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.  相似文献   

8.
SputnikV is a vaccine against SARS-CoV-2 developed by the Gamaleya National Research Centre for Epidemiology and Microbiology. The vaccine has been shown to induce both humoral and cellular immune responses, yet the mechanisms remain largely unknown. Forty SputnikV vaccinated individuals were included in this study which aimed to demonstrate the location of immunogenic domains of the SARS-CoV-2 S protein using an overlapping peptide library. Additionally, cytokines in the serum of vaccinated and convalescent COVID-19 patients were analyzed. We have found antibodies from both vaccinated and convalescent sera bind to immunogenic regions located in multiple domains of SARS-CoV-2 S protein, including Receptor Binding Domain (RBD), N-terminal Domain (NTD), Fusion Protein (FP) and Heptad Repeats (HRs). Interestingly, many peptides were recognized by immunized and convalescent serum antibodies and correspond to conserved regions in circulating variants of SARS-CoV-2. This breadth of reactivity was still evident 90 days after the first dose of the vaccine, showing that the vaccine has induced a prolonged response. As evidenced by the activation of T cells, cellular immunity strongly suggests the high potency of the SputnikV vaccine against SARS-CoV-2 infection.  相似文献   

9.
目的研究多表位DNA壳聚糖微球疫苗的体液免疫应答。方法制备多表位DNA壳聚糖微球疫苗pcD-NA3.1-HME-3C3d,经鼻腔免疫小鼠,蛋白检测微孔试剂盒检测小鼠特异性IgG抗体水平。结果经免疫的小鼠均能产生针对各表位的特异性IgG抗体,DNA壳聚糖微球疫苗的抗体水平明显高于DNA疫苗。结论壳聚糖微球疫苗投递系统可提高多表位DNA疫苗的免疫应答效果。  相似文献   

10.
Infection by Mycobacterium tuberculosis causes tuberculosis, a disease characterized by alteration of host innate and adaptive immunity. These processes are mediated by a series of bacterial biomolecules, among which phenolic glycolipids (PGLs) and the related p‐hydroxybenzoic acid derivatives have been suggested to play important roles. To probe the importance of structural features of these glycans on cytokine modulation, we synthesized three M. tuberculosis PGL analogues ( 1 – 3 ), which differ from the native glycoconjugates by possessing a simplified lipid algycone. The ability of 1 – 3 to modulate the release of proinflammatory cytokines (TNF‐α, IL‐1β, IL‐6, MCP‐1) and nitric oxide (NO) was evaluated. None of the compounds stimulated the secretion of these signalling molecules. However, all showed a Toll‐like Receptor 2‐mediated, concentration‐dependent inhibition profile that was related to the methylation pattern on the glycan.  相似文献   

11.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral agent that causes Coronavirus disease 2019 (COVID-19), a disease that causes flu-like symptoms that, when exacerbated, can have life-threatening consequences. COVID-19 has been linked to persistent symptoms, sequelae, and medical complications that can last months after the initial infection. This systematic review aims to elucidate the innate and adaptive immune mechanisms involved and identify potential characteristics of COVID-19 pathology that may increase symptom duration. We also describe he three different stages of COVID-19—viral replication, immune hyperactivation, and post-acute sequelae—as well as each phase’s corresponding immune response. Finally, we use this multiphasic approach to describe different treatment approaches for each of the three stages—antivirals, immunosuppressants and monoclonal antibodies, and continued immunosuppressants—to fully curate the treatment to the stage of disease.  相似文献   

12.
During tumor growth, angiogenesis is required to ensure oxygen and nutrient transport to the tumor. Vascular endothelial growth factor (VEGF) is the major inducer of angiogenesis and appears to be a key modulator of the anti-tumor immune response. Indeed, VEGF modulates innate and adaptive immune responses through direct interactions and indirectly by modulating protein expressions on endothelial cells or vascular permeability. The inhibition of the VEGF signaling pathway is clinically approved for the treatment of several cancers. Therapies targeting VEGF can modulate the tumor vasculature and the immune response. In this review, we discuss the roles of VEGF in the anti-tumor immune response. In addition, we summarize therapeutic strategies based on its inhibition, and their clinical approval.  相似文献   

13.
The current obesity pandemic has been expanding in both developing and developed countries. This suggests that the factors contributing to this condition need to be reconsidered since some new factors are arising as etiological causes of this disease. Moreover, recent clinical and experimental findings have shown an association between the progress of obesity and some infections, and the functions of adipose tissues, which involve cell metabolism and adipokine release, among others. Furthermore, it has recently been reported that adipocytes could either be reservoirs for these pathogens or play an active role in this process. In addition, there is abundant evidence indicating that during obesity, the immune system is exacerbated, suggesting an increased susceptibility of the patient to the development of several forms of illness or death. Thus, there could be a relationship between infection as a trigger for an increase in adipose cells and the impact on the metabolism that contributes to the development of obesity. In this review, we describe the findings concerning the role of adipose tissue as a mediator in the immune response as well as the possible role of adipocytes as infection targets, with both roles constituting a possible cause of obesity.  相似文献   

14.
Cyclic dinucleotides (CDNs) trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signaling pathway. To decipher this complex cellular process, a better correlation between structure and downstream function is required. Herein, we report the design and immunostimulatory effect of a novel group of c-di-GMP analogues. By employing an “atomic mutagenesis” strategy, changing one atom at a time, a class of gradually modified CDNs was prepared. These c-di-GMP analogues induce type-I interferon (IFN) production, with some being more potent than c-di-GMP, their native archetype. This study demonstrates that CDN analogues bearing modified nucleobases are able to tune the innate immune response in eukaryotic cells.  相似文献   

15.
In humans, mitochondria play key roles in the regulation of cellular functions, such as the regulation of the innate immune response and are targets of several pathogenic viruses and bacteria. Mycobacteria are intracellular pathogens that infect cells important to the immune system of organisms and target mitochondria to meet their energy demands. In this review, we discuss the main mechanisms by which mitochondria regulate the innate immune response of humans to mycobacterial infection, especially those that cause tuberculosis and leprosy. Notably, the importance of mitochondrial haplogroups and ancestry studies for mycobacterial diseases is also discussed.  相似文献   

16.
Graphene and its derivatives are very promising nanomaterials for biomedical applications and are proving to be very useful for the preparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materials (GBM) appears to be critical in promoting regeneration, thus, the study of this response is essential before they are used to prepare any type of scaffold. Another relevant factor is the variability of the GBM surface chemistry, namely the type and quantity of oxygen functional groups, which may have an important effect on cell behavior. The response of RAW-264.7 macrophages to graphene oxide (GO) and two types of reduced GO, rGO15 and rGO30, obtained after vacuum-assisted thermal treatment of 15 and 30 min, respectively, was evaluated by analyzing the uptake of these nanostructures, the intracellular content of reactive oxygen species, and specific markers of the proinflammatory M1 phenotype, such as CD80 expression and secretion of inflammatory cytokines TNF-α and IL-6. Our results demonstrate that GO reduction resulted in a decrease of both oxidative stress and proinflammatory cytokine secretion, significantly improving its biocompatibility and potential for the preparation of 3D scaffolds able of triggering the appropriate immune response for tissue regeneration.  相似文献   

17.
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.  相似文献   

18.
Maintenance of genomic integrity is crucial for cell survival. As such, elegant DNA damage response (DDR) systems have evolved to ensure proper repair of DNA double-strand breaks (DSBs) and other lesions that threaten genomic integrity. Towards this end, most therapeutic studies have focused on understanding of the canonical DNA DSB repair pathways to enhance the efficacy of DNA-damaging therapies. While these approaches have been fruitful, there has been relatively limited success to date and potential for significant normal tissue toxicity. With the advent of novel immunotherapies, there has been interest in understanding the interactions of radiation therapy with the innate and adaptive immune responses, with the ultimate goal of enhancing treatment efficacy. While a substantial body of work has demonstrated control of the immune-mediated (extrinsic) responses to DNA-damaging therapies by several innate immune pathways (e.g., cGAS–STING and RIG-I), emerging work demonstrates an underappreciated role of the innate immune machinery in directly regulating tumor cell-intrinsic/cell-autonomous responses to DNA damage.  相似文献   

19.
国产结核菌素对人体的免疫应答   总被引:1,自引:0,他引:1  
本文将国内五个生物制品研究所生产的不同效价的结素制品分别与国内标准结素H—PPD—C进行同体双臂对比观察。从阳性检出率看上海>长春>兰州>北京>成都,但是,各生研所制品相互间无显著性差异。综合结果表明,上海所生产的OT效价比较稳定,无论是结素反应阳性率还是硬结均径可与国内标准结素相媲美。  相似文献   

20.
Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号