首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《国际聚合物材料杂志》2012,61(17):1048-1057
Abstract

In this study, single factor experiments and orthogonal test were designed to fabricate a novel poly(vinyl alcohol) (PVA), human-like collagen (HLC) and sodium alginate (SA) composite hydrogel as wound dressings. The obtained hydrogel dressing was soft, elastic and breathable with uniform macro pores, and it remains soft after lyophilization which restore to the original appearance after absorbing a large amount of water. In vivo full-thickness skin defects treated with the hydrogel dressings in rabbit revealed that the hydrogel promoted wound healing through accelerating reepithelization and the growth of collagen fibers. All the results demonstrated the great potential of the hydrogel as wound dressing.  相似文献   

2.
Wound dressings are usually employed to maintain suitable conditions around the injured skin to accelerate wound healing. This paper aims to report functional composite dressings combined with polycaprolactone (PCL) nanofibers, self-assembly zein coating and modified ZnO nanoparticles (ZnO NPs) for wound management. The synthetic compounds and prepared composite dressings are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. Meanwhile, the water vapor transmission rate, hemostatic performance, antibacterial activity, and cytocompatibility of the composite dressings are systematically tested to evaluate their applicability in wound treatment. The results show that the multilayer dressings can retain moisture and prevent excessive dehydration of wound. In vitro hemostatic test is conducted, and the enhanced blood clotting capacity and the activation of platelets indicate that the desired dressings are able to control hemorrhaging from wound. Meanwhile, the composite dressings with excellent biocidal efficacy against Gram-positive Staphylococcus aureus (6.01 Log within 30 min) and Gram-negative Escherichia coli O157:H7 (6.04 Log within 30 min) can effectively prevent wound infection. Furthermore, the dressings show no toxicity which are evidenced in hemolysis and cytocompatibility evaluation, and have potential application for wound healing.  相似文献   

3.
With the changes in the modern disease spectrum, pressure ulcers, diabetic feet, and vascular-derived diseases caused refractory wounds is increasing rapidly. The development of wound dressings has partly improved the effect of wound management. However, traditional wound dressings can only cover the wound and block bacteria, but are generally powerless to recurrent wound infection and tissue healing. There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment, absorbing wound exudate, anti-inflammatory, antibacterial, and accelerating wound healing process. Hydrogel wound dressings have the aforementioned characteristics, and can keep the wound in a moist environment because of the high water content, which is an ideal choice for wound treatment. This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings. The choice of different preparation materials gives the particularities of different hydrogel wound dressings. It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis. Besides, in-depth discussion of four typical hydrogel wound dressings including double network hydrogels, nanocomposite hydrogels, drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.  相似文献   

4.
Ibuprofen‐loaded chitosan/gelatin (CS/GE) composite films were fabricated in this work. The morphology of the composite film was investigated using scanning electron microscopy. The functional groups of the composite film before and after crosslinking were characterized using Fourier transform infrared spectroscopy. Meanwhile, the mechanical properties, antibacterial performance, cytocompatibility, and hemostatic activity of the composite films were investigated. The results show that the amount of CS affected the mechanical properties and liquid uptake capacities of the composite films. The composite film showed better bactericidal activity against Staphylococcus aureus than Escherichia coli. In vitro drug‐release evaluations showed that crosslinking could control the drug‐release rate and period in wound healing. Both types of CS/GE and drug‐loaded CS/GE composite films also showed excellent cytocompatibility in cytotoxicity assays. The hemostatic evaluation indicated that the composite film crosslinked by glutaraldehyde in rabbit livers had a dramatic hemostatic efficacy. Therefore, ibuprofen‐loaded CS/GE composite films are potentially applicable as a wound dressing material. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45441.  相似文献   

5.
Collagen‐based hydrogels have gained significant popularity in biomedical applications; however, traditional collagen hydrogels are easily disabled for lack of self‐healing properties due to their non‐reversible bonds. Here, a self‐healing collagen‐based hydrogel has been developed based on dynamic network chemistry, consisting of dynamic imine linkages between collagen and dialdehyde guar gum, as well as diol‐borate ester bonds between guar gum and borax. In addition, macromolecular interactions amongst macromolecules are involved. The above‐mentioned interactions were validated by Fourier transform infrared spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DSC. The as‐prepared collagen‐based hydrogels showed good injectability and rapid self‐healing capacity (within 3 min) as reflected from injection tests, optical microscope observations, rheological measurements, as well as self‐healing studies. In addition, the collagen‐based hydrogels showed accelerated wound‐healing properties. This study offers a facile strategy to endow self‐healing ability on collagen‐based hydrogels without any external stimulus, which show great application potential as wound dressings. © 2020 Society of Chemical Industry  相似文献   

6.
For the healing process, in this study, an innovative polymeric hydrogel network including polyvinyl alcohol (PVA)/chitosan (CS)/gum tragacanth (GT) loaded with vitamin E (VE) was produced by the freeze–thaw approach. In order to investigate the characteristics of the prepared samples, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analyzes were performed. Also, water vapor transmission rate (WVTR), swelling ratio, gel fraction and mechanical properties were measured. Then, to observe their cytocompatibility, MTT assay and cell adhesion studies were assessed. The results of FTIR confirmed the presence of PVA, CS, GT, and VE in hydrogel films. As well as, the SEM images showed the effect of the freezing and thawing method in creating a smooth surface with small and regular pores. It was found with adding the CS and GT to PVA improves swelling ratio, gel fraction, WVTR and elongation of hydrogel films. Further, in examining the adhesion and cytotoxicity of the samples, the non-toxic quiddity of the PVA/CS/GT hydrogel films was corroborated. In the end, the antibacterial properties revealed that the film containing GT and CS had the greatest antibacterial activity. According to the observed results, PVA/CS/GT hydrogel films loaded with VE can be good for wound healing applications.  相似文献   

7.
Chitosan (CS) has biocompatibility and biodegradability, but the bulk CS hydrogel/membranes with its poor strength and limited antibacterial property could not satisfy the practical application. Here green dissolving/regeneration and in situ reduction strategy was combined to construct high strength antibacterial CS membranes. First nanofibrous CS hydrogels were constructed through dissolving CS in LiOH/KOH/urea aqueous system via freezing–thawing process followed regeneration. Then, Ag NPs were immobilized along CS nanofibers through in situ reductions of Ag + by the NH2 group of CS. The obtained NCM-Ag composite dry membranes are easy for storing and can quick switch to nanofibrous hydrogels as absorbing water. Size of Ag NPs can be controlled to very small until 2 nm by concentration and limited space network. Fourier transform infrared spectroscopy and X-ray photoelectron spectrometer indicated the forceful grasp ability of CS nanofibers to Ag NPs for a stable binding, mechanical property was enhanced over 100Mpa as the nanofibrous structure and chain linked by Ag coordination. The NCM-Ag membranes had excellent antibacterial activities against both Staphylococcus aureus and Escherichia coli. Moreover, such nanofibrous CS membrane exhibited good adhesive ability to tissues. Combining all these properties, NCM-Ag membranes would be potential as antibacterial adhesion barrier to accelerate wound healing.  相似文献   

8.
Many efforts have been made to develop modern wound dressings to overcome limitations of traditional ones. Smart nanocomposite hydrogels are appropriate candidates. In this work, a novel responsive nanocomposite hydrogel based on poly(vinyl alcohol)/chitosan/honey/clay was developed and evaluated as a novel wound dressing. The morphology and properties of synthesized nanocomposite hydrogels loaded with honey as a drug model were investigated. The exfoliated morphology of nanocomposite was confirmed by X‐ray diffractometry. Swelling studies were performed at 20 and 37 °C at various pH. The results showed that swelling increased as a result of temperature rise and maximum swelling occurred at a pH of 2. In vitro release of honey was also studied at the same conditions. Corresponding results indicated faster honey release rate at higher pH values. MTT results exhibited no cytotoxicity in nanocomposite hydrogel system. Investigation of antibacterial activity revealed more than 99% antibacterial activity for proposed system. In vivo results confirmed the wound healing ability of developed system. Generally, appropriate properties of proposed system made it ideal in wound dressing applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46311.  相似文献   

9.
Hydrogels for wound dressings from a mixture of poly(vinyl alcohol) (PVA), poly(N-vinylpyrrolidone) (PVP), glycerin and an antibacterial agent were obtained by a γ-irradiation combined with freeze-thawing. The physical properties such as the gelation and swelling degree of the hydrogels were examined. When the PVP/PVA ratio was 6: 4 (wt%) and prepared by combined irradiation and freeze-thawing, it showed an excellent swelling capacity (>1,200%). The antibacterial effect of the hydrogels containing the antibacterial agents was observed to be effective as the concentration of antibacterial agents increased. The results demonstrated that hydrogel in a proper blending ratio could be used as a wound dressing that can accelerate wound healing with an antibacterial effect.  相似文献   

10.
The effects of molecular weight (MW) and the degree of deacetylation (DD) of chitosan (CS) on the physicochemical properties, antibacterial activity, and cytotoxicity of CS/2‐glycerophosphate (GP)/nanosilver hydrogel in the development of a thermosensitive in situ formed wound dressing are examined herein. The gelation temperatures for the hydrogels were measured in the range of 32–37°C by manipulating the MW and DD of CS and the GP concentration. The structure of 88% DD CS hydrogel was more porous, uniform, and connective than that of the 80% DD CS hydrogel. The superior water vapor transmission rates of hydrogels with 80% and 88% DD CS were 7150 ± 52 and 9044 ± 221 gm?2 d?1, respectively. The skin permeations of nanosilver by the 80% and 88% DD CS hydrogels were 3.82 and 4.99 μg cm?2, respectively, in 24 h tests. Both the hydrogels with 6 and 12 ppm nanosilver showed cytotoxicity for HS68 cells. The diameters of the hydrogel's inhibition zones for Pseudomonas aeruginosa and Staphylococcus aureus increased when the concentration of nanosilver increased and the MW of the CS decreased. Therefore, the hydrogel could be prepared with lower MW CS and lower concentration of nanosilver in order to reduce the cytotoxicity of nanosilver, while maintaining similar antibacterial activity for a hydrogel prepared with higher concentration nanosilver and higher MW CS. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
It is an exploration of the inherent wound-healing tendency of Azadirachta indica gum (AIG) or neem gum polysaccharides to develop the hydrogel wound dressings with enhanced potential during wound management. Herein this research work, antibiotic moxifloxacin encapsulated AIG network copolymeric hydrogels were developed by functionalizing with carbapol and poly(acrylamide) [poly(AAm)] for better wound healing. The polymer-drug, polymer-blood, and polymer-bio membrane interactions were evaluated in biomedical properties. The copolymeric network structure was confirmed by scanning electron micrographs (SEMs), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results confirmed sustained release of the moxifloxacin with diffusion by non-Fickian process and Korsmeyer–Peppas kinetic model in the phosphate buffer saline (PBS). These interactions inferred the blood-compatible (hemolytic index 3.41 ± 0.70%) and mucoadhesive nature (polymer-biomembrane detachment force 0.09 ± 0.01 mN) of hydrogel dressing. The per gram of hydrogel dressings absorbed 10.22 ± 0.23 g of simulated wound fluid which is very useful to maintain moist wound environment for better wound healing. All these interactions and properties indicated the suitability of the hydrogel material for wound dressing applications for better wound care.  相似文献   

12.
At present, silk fibroin (SF) hydrogel can be prepared by means of electrodeposition at 25 V in direct current (DC) mode. Reducing the applied voltage would provide benefits, including lower fabrication costs, less risk of high voltage shocks, and better stability of devices. Here, a simple but uncommon strategy for SF-based hydrogel preparation using 4 V in DC mode is discussed. SF was mixed and cross-linked with carboxymethyl chitosan (CMCS) through hydrogen bonding, then co-deposited on the graphite electrode. The thickness, mass, and shape of the SF/CMCS hydrogel were easily controlled by adjusting the electrodeposition parameters. Morphological characterization of the prepared hydrogel via SEM revealed a porous network within the fabricated hydrogel. This structure was due to intermolecular hydrogen bonding between SF and CMCS, according to the results of thermogravimetric analysis and rheological measurements. As a potential wound dressing, SF/CMCS hydrogel maintained a suitable moisture environment for wound healing and demonstrated distinct properties in terms of promoting the proliferation of HEK-293 cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, histological studies were conducted on a full-thickness skin wound in rats covered with the SF/CMCS hydrogel, with results indicating that this hydrogel can promote wound re-epithelization and enhance granulation tissue formation. These results illustrate the feasibility of using the developed strategy for SF-based hydrogel fabrication in practice for wound dressing.  相似文献   

13.
Despite aminoglycosides (AGs) have superior antibacterial ability, all approved AGs by FDA are associated with adverse effects such as ototoxicity and nephrotoxicity. To solve these problems, AGs hydrogels based on dynamic covalent bond cross-linking were quickly prepared within 25 s by using AGs, aldehyde hyaluronic acid (A-HA), and adipic acid dihydrazide graft hyaluronic acid (HA-ADH) as materials. FT-IR, thermal analysis, and SEM results exhibited that A-HA/HA-ADH/AGs hydrogels were successfully synthesized with highly porous and interconnected network structure. The water absorption ratio of the hydrogels increased with the decreasing pH and temperature, indicating the hydrogels were pH- and temp-responsive. The pH-dependent degradation also demonstrated pH sensitivity of the hydrogels. Rheology and self-healing analysis assessment displayed that AGs hydrogels had good mechanical property, self-healing ability, and injectability. The hydrogels had no cytotoxicity to L929 cells and their hemolysis ratios were between 0.7% and 1.3%, which reached a nontoxic level. Most importantly, inhibition zones results demonstrated that the hydrogels had excellent and sustained antibacterial performance against Escherichia coli and Staphylococcus aureus. Therefore, A-HA/HA-ADH/AGs hydrogels are potential dressings for wound healing. Further plans including antibacterial and in vivo wound healing assays will be shown in the next work.  相似文献   

14.
Carbodiimide cross-linked silk fibroin (SF)/sodium alginate (SA) composite hydrogels with superior stability and tunable properties are developed by varying preparation parameters. SF/SA blend ratio modulation allows to achieve composite hydrogel gelation times of 18–65 min, and rheological analysis shows that the speed of gel formation, the hydrogel network's density, and the hydrogels’ compressive properties are closely related to the blend ratio. The G′ of different hydrogels varies substantially from 28 to 413 Pa, and the hydrogel with higher SF content has a greater stiffness. The composite hydrogels present appropriate porosity of 76.63–85.09% and pore size of 316–603 µm. Hydrogel stability improves significantly after cross-linking, and substantial swelling occurs due to the hydrophilicity of SA. The 7/3 and 6/4 SF/SA hydrogels are more resistant to degradation in PBS, and cytotoxicity testing confirmed their biocompatibility. For release studies in vitro, two model compounds are used as drug models, tetracycline hydrochloride, and bovine serum albumin (BSA). Different ratios of SF/SA have a greater influence on the release of BSA. This study provides a practical preparation method for flexible SF/SA composite hydrogels, which can help design hydrogels with specific physicochemical properties for different applications, especially drug delivery.  相似文献   

15.
In this study, nanocomposite hydrogels composed of sodium carboxymethylated starch (CMS)-containing CuO nanoparticles (CMS@CuO) were synthesized and used as experimental wound healing materials. The hydrogels were fabricated by a solution-casting technique using citric acid as a crosslinking agent. They were characterized by Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) to evaluate their physicochemical properties. In addition, swelling, antibacterial activities, antioxidant activities, cytotoxicity, and in vivo wound healing were investigated to evaluate the wound healing potential of the CMS@CuO nanocomposite hydrogels. Growth inhibition of the Gram-positive and Gram-negative pathogens, antioxidant activity, and swelling were observed in the CMS@CuO nanocomposite hydrogels containing 2 wt.% and 4 wt.% CuO nanoparticles. The hydrogel containing 2 wt.% CuO nanoparticles displayed low toxicity to human fibroblasts and exhibited good biocompatibility. Wounds created in rats and treated with the CMS@2%CuO nanocomposite hydrogel healed within 13 days, whereas wounds were still present when treated for the same time-period with CMS only. The impact of antibacterial and antioxidant activities on accelerating wound healing could be ascribed to the antibacterial and antioxidant activities of the nanocomposite hydrogel. Incorporation of CuO nanoparticles in the hydrogel improved its antibacterial properties, antioxidant activity, and degree of swelling. The present nanocomposite hydrogel has the potential to be used clinically as a novel wound healing material.  相似文献   

16.
Existing treatment methods encounter difficulties in effectively promoting skin wound healing, making this a serious challenge for clinical treatment. Extracellular vesicles (EVs) secreted by stem cells have been proven to contribute to the regeneration and repair of wound tissue, but they cannot be targeted and sustained, which seriously limits their current therapeutic potential. The recombinant human collagen III protein (rhCol III) has the advantages of good water solubility, an absence of hidden viral dangers, a low rejection rate and a stable production process. In order to achieve a site-specific sustained release of EVs, we prepared a rhCol III hydrogel by cross-linking with transglutaminase (TGase) from Streptomyces mobaraensis, which has a uniform pore size and good biocompatibility. The release profile of the rhCol III-EVs hydrogel confirmed that the rhCol III hydrogel could slowly release EVs into the external environment. Herein, the rhCol III-EVs hydrogel effectively promoted macrophage changing from type M1 to type M2, the migration ability of L929 cells and the angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the rhCol III-EVs hydrogel is shown to promote wound healing by inhibiting the inflammatory response and promoting cell proliferation and angiogenesis in a diabetic rat skin injury model. The reported results indicate that the rhCol III-EVs hydrogel could be used as a new biological material for EV delivery, and has a significant application value in skin wound healing.  相似文献   

17.
An antibacterial hydrogel wound dressing was successfully synthesized by the gamma irradiation method. A gelatin solution was mixed with a poly(vinyl alcohol) (PVA) solution of similar concentrations at different weight ratios of 100 : 0, 80 : 20, and 60 : 40 w/w, and irradiated at 30, 40, or 50 kGy. The testing of physical properties showed that the addition of PVA could improve both durability and mechanical integrity. The 60 : 40 hydrogels irradiated at 30 kGy were optimal, and chosen to add silver nitrate at 0.25, 0.50, 0.75, or 1.00 wt % (based on the solid content) to improve the antibacterial properties. After gamma irradiation, silver nanoparticles (AgNPs) were formed. The AgNP/gelatin/PVA hydrogels were characterized for physical properties, cytotoxicity, and antibacterial activity. The AgNP/gelatin/PVA hydrogels could be used as antibacterial wound dressings because they exhibited appropriate physical properties, noncytotoxicity, and could inhibit the growth of tested bacteria. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41138.  相似文献   

18.
Modernization and improvement of wound dressing materials is an important topic in biomaterials and biomedicine fields, as the traditional materials are inadequate and susceptible to bacterial infections. In recent times, polymer-based hydrogel materials have presented themselves as excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties, and low adhesiveness. Additionally, cross linked hydrogel matrices serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to multi-phase mechanism of action and low susceptibility to induce bacterial resistance. Their incorporation inside polymer matrices allows improvement of wound dressing properties and sustained protection against bacterial infection. Electrochemical methods for AgNPs synthesis are facile and green alternatives to chemical routes, allowing the formation of highly stable AgNPs with strong antibacterial effect. In this article, we aim to provide a comprehensive review of the existing research on the topic of electrochemically synthesized silver nanoparticles incorporated in polymer matrices with a special focus on the chitosan-based hydrogels as prospective materials for wound dressing applications.  相似文献   

19.
In this article, a hybrid system of hydrogel/frog egg-like microspheres (H-FMS) formed by the combination of coaxial electrostatic spraying and freeze-drying was introduced for enhancing wound healing efficiency through the sustained release of Rana chensinensis skin peptides (RCSPs). The porous PVA/gelatin hydrogel were obtained and frog egg-like microspheres (FMS) of sodium alginate (SA), shaping uniform and smooth, were embedded into hydrogel. Based on PVA/gelatin hydrogel, the FMS addition increased the water absorption of hydrogel to 1,105%. RCSPs were more effectively encapsulated into FMS than solid microspheres (MS). Not only does the H-FMS act as good “depots” for sustained release of RCSPs over 9 days, without exhibiting obvious burst release, but also show good biocompatibility in vitro. In vivo studies on wound healing as well as the histology of fibroblasts, re-epithelialization, inflammation, and hair follicles indicated that the structure of H-FMS released RCSPs continuously and promoted wound healing in rats significantly.  相似文献   

20.
Hydrogels have great potential applications in biomedical materials, but their applications in complex physiological environments are severely limited by their weak strength and biotoxicity. Generally, synthetic polymer hydrogels and natural polymer hydrogels have complementary advantages in terms of mechanical strength and biological activity. Herein, tannic acid (TA), a natural material, was introduced into the polyvinyl alcohol/collagen (PVA-COL) double network to prepare a hydrogel (PVA-COL-TA) with good bioactivity and mechanical properties. The tensile strength of the composite hydrogel can reach up to 20 times that of the pure PVA hydrogel. And the hydrogel after swelling under physiological conditions also exhibits stable mechanical properties. The introduction of TA can reduce the degradation rate of COL, enabling it to continue to exert biological activity. in vitro cytocompatibility experiments showed that PVA-COL-TA hydrogel has good sustained biological activity and the potential for biomedical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号