首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the epithelial–mesenchymal transition (EMT) in lung epithelial cells is increasingly being recognized as a key stage in the development of COPD, fibrosis, and lung cancers, which are all highly associated with cigarette smoking and with exposure to second-hand smoke. Using the exposure of human lung cancer epithelial A549 cells and non-cancerous Beas-2B cells to sidestream cigarette smoke extract (CSE) as a model, we studied the protective effects of adipose-derived stem cell-conditioned medium (ADSC-CM) against CSE-induced cell death and EMT. CSE dose-dependently induced cell death, decreased epithelial markers, and increased the expression of mesenchymal markers. Upstream regulator analysis of differentially expressed genes after CSE exposure revealed similar pathways as those observed in typical EMT induced by TGF-β1. CSE-induced cell death was clearly attenuated by ADSC-CM but not by other control media, such as a pass-through fraction of ADSC-CM or A549-CM. ADSC-CM effectively inhibited CSE-induced EMT and was able to reverse the gradual loss of epithelial marker expression associated with TGF-β1 treatment. CSE or TGF-β1 enhanced the speed of A549 migration by 2- to 3-fold, and ADSC-CM was effective in blocking the cell migration induced by either agent. Future work will build on the results of this in vitro study by defining the molecular mechanisms through which ADSC-CM protects lung epithelial cells from EMT induced by toxicants in second-hand smoke.  相似文献   

2.

Background  

Blood of cigarette smokers routinely displays decreased antioxidant capacity and increased oxidized lipids compared to nonsmokers. This is thought to be due to both chronic exposure to cigarette smoke in addition to low intake of dietary antioxidants, and is a routine finding in veteran smokers. No study to date has determined the independent and combined impact of dietary intake and cigarette smoking on blood antioxidant capacity and oxidative stress in a sample of young, novice smokers.  相似文献   

3.
The female reproductive system represents a sensitive target of the harmful effects of cigarette smoke, with folliculogenesis as one of the ovarian processes most affected by this exposure. The aim of this study was to analyze the impact of tobacco smoking on expression of oxidative stress-related genes in cumulus cells (CCs) from smoking and non-smoking women undergoing IVF techniques. Real time PCR technology was used to analyze the gene expression profile of 88 oxidative stress genes enclosed in a 96-well plate array. Statistical significance was assessed by one-way ANOVA. The biological functions and networks/pathways of modulated genes were evidenced by ingenuity pathway analysis software. Promoter methylation analysis was performed by pyrosequencing. Our results showed a down-regulation of 24 genes and an up-regulation of 2 genes (IL6 and SOD2, respectively) involved in defense against oxidative damage, cell cycle regulation, as well as inflammation in CCs from smoking women. IL-6 lower promoter methylation was found in CCs of the smokers group. In conclusion, the disclosed overall downregulation suggests an oxidant-antioxidant imbalance in CCs triggered by cigarette smoking exposure. This evidence adds a piece to the puzzle of the molecular basis of female reproduction and could help underlay the importance of antioxidant treatments for smoking women undergoing IVF protocols.  相似文献   

4.
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system's ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.  相似文献   

5.
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.  相似文献   

6.
Epidemiological evidence shows that smoking causes a thrombophilic milieu that may play a role in the pathophysiology of chronic obstructive pulmonary disease (COPD) as well as pulmonary thromboembolism. The increased nicotine level induces a prothrombotic status and abnormal blood coagulation in smokers. Since several anticoagulants increase bleeding risk, alternative therapies need to be identified to protect against thrombosis without affecting hemostasis. Astragalin is a flavonoid present in persimmon leaves and green tea seeds and exhibits diverse activities of antioxidant and anti-inflammation. The current study investigated that astragalin attenuated smoking-induced pulmonary thrombosis and alveolar inflammation. In addition, it was explored that molecular links between thrombosis and inflammation entailed protease-activated receptor (PAR) activation and oxidative stress-responsive mitogen-activated protein kinase (MAPK)-signaling. BALB/c mice were orally administrated with 10–20 mg/kg astragalin and exposed to cigarette smoke for 8 weeks. For the in vitro study, 10 U/mL thrombin was added to alveolar epithelial A549 cells in the presence of 1–20 µM astragalin. The cigarette smoking-induced the expression of PAR-1 and PAR-2 in lung tissues, which was attenuated by the administration of ≥10 mg/kg astragalin. The oral supplementation of ≥10 mg/kg astragalin to cigarette smoke-challenged mice attenuated the protein induction of urokinase plasminogen activator, plasminogen activator inhibitor-1and tissue factor, and instead enhanced the induction of tissue plasminogen activator in lung tissues. The astragalin treatment alleviated cigarette smoke-induced lung emphysema and pulmonary thrombosis. Astragalin caused lymphocytosis and neutrophilia in bronchoalveolar lavage fluid due to cigarette smoke but curtailed infiltration of neutrophils and macrophages in airways. Furthermore, this compound retarded thrombin-induced activation of PAR proteins and expression of inflammatory mediators in alveolar cells. Treating astragalin interrupted PAR proteins-activated reactive oxygen species production and MAPK signaling leading to alveolar inflammation. Accordingly, astragalin may interrupt the smoking-induced oxidative stress–MAPK signaling–inflammation axis via disconnection between alveolar PAR activation and pulmonary thromboembolism.  相似文献   

7.
The role of PAR-1 expression and activation was described in epithelial cells from the central and distal airways of COPD patients using an ex vivo/in vitro model. PAR-1 immunoreactivity was studied in epithelial cells from surgical specimens of the central and distal airways of COPD patients and healthy control (HC). Furthermore, PAR-1 expression and activation were measured in both the human bronchial epithelial cell line (16HBE) and normal human bronchial epithelial cells (NHBEs) exposed to cigarette smoke extract (CSE) (10%) or thrombin. Finally, cell proliferation, apoptosis, and IL-8 release were detected in stimulated NHBEs. We identified higher levels of PAR-1 expression/activation in epithelial cells from the central airways of COPD patients than in HC. Active PAR-1 increased in epithelial cells from central and distal airways of COPD, with higher levels in COPD smokers (correlated with pack-years) than in COPD ex-smokers. 16HBE and NHBEs exposed to CSE or thrombin showed increased levels of active PAR-1 (localized in the cytoplasm) than baseline conditions, while NHBEs treated with thrombin or CSE showed increased levels of IL-8 proteins, with an additional effect when used in combination. Smoking habits generate the upregulation of PAR-1 expression/activation in airway epithelial cells, and promoting IL-8 release might affect the recruitment of infiltrating cells in the airways of COPD patients.  相似文献   

8.
Parkinson's disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD.  相似文献   

9.
Cadmium (Cd) is a toxic heavy metal that is considered an environmental contaminant. Several sources of human exposure to Cd, including employment in primary metal industries, production of certain batteries, foods, soil and cigarette smoke, are known. Its inhalation has been related to different respiratory diseases and toxic effects, among which alterations of the physiological redox state in individuals exposed to the metal have been described. Host-cell redox changes characteristic of oxidative stress facilitate the progression of viral infection through different mechanisms. In this paper, we have demonstrated that pre-treatment with CdCl2 of MDCK cells increased influenza virus replication in a dose-dependent manner. This phenomenon was related to increased viral protein expression (about 40% compared with untreated cells). The concentration of CdCl2, able to raise the virus titer, also induced oxidative stress. The addition of two antioxidants, a glutathione (GSH) derivative or the GSH precursor, N-acetyl-l-cysteine, to Cd pre-treated and infected cells restored the intracellular redox state and significantly inhibited viral replication. In conclusion, our data demonstrate that Cd-induced oxidative stress directly increases the ability of influenza virus to replicate in the host-cell, thus suggesting that exposure to heavy metals, such as this, could be a risk factor for individuals exposed to a greater extent to the contaminant, resulting in increased severity of virus-induced respiratory diseases.  相似文献   

10.
Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.  相似文献   

11.
12.
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.  相似文献   

13.
Maternal smoking is a risk factor of preterm prelabor rupture of the fetal membranes (pPROM), which is responsible for 30% of preterm births worldwide. Cigarettes induce oxidative stress and inflammation, mechanisms both implicated in fetal membranes (FM) weakening. We hypothesized that the receptor for advanced glycation end-products (RAGE) and its ligands can result in cigarette-dependent inflammation. FM explants and amniotic epithelial cells (AECs) were treated with cigarette smoke condensate (CSC), combined or not with RAGE antagonist peptide (RAP), an inhibitor of RAGE. Cell suffering was evaluated by measuring lactate dehydrogenase (LDH) medium-release. Extracellular HMGB1 (a RAGE ligand) release by amnion and choriodecidua explants were checked by western blot. NF-κB pathway induction was determined by a luciferase gene reporter assay, and inflammation was evaluated by cytokine RT-qPCR and protein quantification. Gelatinase activity was assessed using a specific assay. CSC induced cell suffering and HMGB1 secretion only in the amnion, which is directly associated with a RAGE-dependent response. CSC also affected AECs by inducing inflammation (cytokine release and NFκB activation) and gelatinase activity through RAGE engagement, which was linked to an increase in extracellular matrix degradation. This RAGE dependent CSC-induced inflammation associated with an increase of gelatinase activity could explain a pathological FM weakening directly linked to pPROM.  相似文献   

14.
Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.  相似文献   

15.
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from “wet” biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.  相似文献   

16.
Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic) antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.  相似文献   

17.
18.
Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol) to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.  相似文献   

19.
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.  相似文献   

20.
Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidant-induced oxidative stress. Several animal models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based on the results of previous animal experiments, the present review specifically focuses on four issues: (1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed the summary of research findings for the effects of various antioxidants for treatment strategies for OAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号