首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.  相似文献   

3.
As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFβ binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.  相似文献   

4.
Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1–LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.  相似文献   

5.
Lack of adult cells’ ability to produce sufficient amounts of elastin and assemble functional elastic fibers is an issue for creating skin substitutes that closely match native skin properties. The effects of female sex hormones, primarily estrogen, have been studied due to the known effects on elastin post-menopause, thus have primarily included older mostly female populations. In this study, we examined the effects of female sex hormones on the synthesis of elastin by female and male human dermal fibroblasts in engineered dermal substitutes. Differences between the sexes were observed with 17β-estradiol treatment alone stimulating elastin synthesis in female substitutes but not male. TGF-β levels were significantly higher in male dermal substitutes than female dermal substitutes and the levels did not change with 17β-estradiol treatment. The male dermal substitutes had a 1.5-fold increase in cAMP concentration in the presence of 17β-estradiol compared to no hormone controls, while cAMP concentrations remained constant in the female substitutes. When cAMP was added in addition to 17β-estradiol and progesterone in the culture medium, the sex differences were eliminated, and elastin synthesis was upregulated by 2-fold in both male and female dermal substitutes. These conditions alone did not result in functionally significant amounts of elastin or complete elastic fibers. The findings presented provide insights into differences between male and female cells in response to female sex steroid hormones and the involvement of the cAMP pathway in elastin synthesis. Further explorations into the signaling pathways may identify better targets to promote elastic fiber synthesis in skin substitutes.  相似文献   

6.
Diabetic foot ulcer (DFU) is a diabetes complication which greatly impacts the patient’s quality of life, often leading to amputation of the affected limb unless there is a timely and adequate management of the patient. DFUs have a high economic impact for the national health system. Data have indeed shown that DFUs are a major cause of hospitalization for patients with diabetes. Based on that, DFUs represent a very important challenge for the national health system. Especially in developed countries diabetic patients are increasing at a very high rate and as expected, also the incidence of DFUs is increasing due to longevity of diabetic patients in the western population. Herein, the surgical approach focused on the targeted use of the acellular dermal matrix has been integrated with biochemical and morphological/histological analyses to obtain evidence-based information on the mechanisms underlying tissue regeneration. In this research report, the clinical results indicated decreased postoperative wound infection levels and a short healing time, with a sound regeneration of tissues. Here we demonstrate that the key biomarkers of wound healing process are activated at gene expression level and also synthesis of collagen I, collagen III and elastin is prompted and modulated within the 28-day period of observation. These analyses were run on five patients treated with Integra® sheet and five treated with the injectable matrix Integra® Flowable, for cavitary lesions. In fact, clinical evaluation of improved healing was, for the first time, supported by biochemical and histological analyses. For these reasons, the present work opens a new scenario in DFUs treatment and follow-up, laying the foundation for a tailored protocol towards complete healing in severe pathological conditions.  相似文献   

7.
8.
Systemic sclerosis (SSc) is characterised by progressive multiple organ fibrosis leading to morbidity and mortality. Lysyl oxidases play a vital role in the cross-linking of collagens and subsequent build-up of fibrosis in the extracellular matrix. As such, their inhibition provides a novel treatment paradigm for SSc. A novel small molecule pan-lysyl oxidase inhibitor, PXS-5505, currently in clinical development for myelofibrosis treatment was evaluated using in vivo rodent models resembling the fibrotic conditions in SSc. Both lysyl oxidase and lysyl oxidase-like 2 (LOXL2) expression were elevated in the skin and lung of SSc patients. The oral application of PXS-5505 inhibited lysyl oxidase activity in the skin and LOXL2 activity in the lung. PXS-5505 exhibited anti-fibrotic effects in the SSc skin mouse model, reducing dermal thickness and α-smooth muscle actin. Similarly, in the bleomycin-induced mouse lung model, PXS-5505 reduced pulmonary fibrosis toward normal levels, mediated by its ability to normalise collagen/elastin crosslink formation. PXS-5505 also reduced fibrotic extent in models of the ischaemia-reperfusion heart, the unilateral ureteral obstruction kidney, and the CCl4-induced fibrotic liver. PXS-5505 consistently demonstrates potent anti-fibrotic efficacy in multiple models of organ fibrosis relevant to the pathogenesis of SSc, suggesting that it may be efficacious as a novel approach for treating SSc.  相似文献   

9.
In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.  相似文献   

10.
11.
After skin injury, wound healing sets into motion a dynamic process to repair and replace devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis, inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in orchestrating the wound healing both in negative and positive ways. Many studies reported that skin microbiota can impose negative and positive effects on the wound. Recent findings have shown that many bacterial species on human skin are able to convert aromatic amino acids into so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin, which are all released into the environment. As a stress reaction, wounded epithelial cells release the hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play, as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors (ARs) play a key role in many physiological and disease-related processes and are expressed in numerous cell types. In this review, we describe the role of ARs in relation to wound healing in keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota in wound healing.  相似文献   

12.
13.
Fibrillin-1 is the major structural component of the 10 nm-diameter microfibrils that confer key physical and mechanical properties to virtually every tissue, alone and together with elastin in the elastic fibers. Mutations in fibrillin-1 cause pleiotropic manifestations in Marfan syndrome (MFS), including dissecting thoracic aortic aneurysms, myocardial dysfunction, progressive bone loss, disproportionate skeletal growth, and the dislocation of the crystalline lens. The characterization of these MFS manifestations in mice, that replicate the human phenotype, have revealed that the underlying mechanisms are distinct and organ-specific. This brief review summarizes relevant findings supporting this conclusion.  相似文献   

14.
Water-insoluble glucan was isolated from the baker's yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing.  相似文献   

15.
In this study, the effects of lidocaine and hypoxia on the biosynthesis of phospholipids in the hamster heart were examined. hamster hearts were perfused with [1,3-3H]glycerol under normal and hypoxic conditions, and in the absence or presence of 0.5 mg/mL lidocaine. After perfusion, the radioactivity incorporated into the various phospholipid fractions was determined. With the exception of phosphatidylcholine, the synthesis of phospholipids was generally stimulated by lidocaine perfusion. In contrast, hypoxia caused a general decrease in phospholipid biosynthesis which was partially restored by lidocaine. ATP and CTP levels were severely reduced under hypoxic conditions, but their levels were not restored by lidocaine treatment. The activities of enzymes for phospholipid synthesis were determined under the various perfusion conditions. The activity of phosphatidic acid phosphatase was elevated by lidocaine and decreased by hypoxic treatment. The activity of CTP:phosphatidic acid cytidylyltransferase was increased under hypoxia, with or without lidocaine. Despite the reduction in phosphatidylcholine biosynthesis, no change in the activity of cytidine diphosphocholine (CDPcholine): diacylglycerol cholinephosphotransferase was detected following lidocaine or hypoxic perfusion. However, enzyme activity was inhibited by the presence of lidocaine in the assay mixture. Our results indicate that the reduction in phospholipid biosynthesis under hypoxic conditions was caused mainly by diminishing high-energy nucleotide levels. The enhancement of phospholipid biosynthesis by lidocaine appeared to be mediated in part by modulation of enzyme activities.  相似文献   

16.
While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non‐woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.  相似文献   

18.
19.
Composite tissue injuries (CTI) are common among US Military Service members during combat operations, and carry a high potential of morbidity. Furthermore, CTI are often complicated due to an altered wound healing response, resulting in part from a dysregulation of the innate and adaptive immune responses. Unlike normal wound healing, in CTI, disruptions occur in innate immune responses, altering neutrophil functions, macrophage activation and polarization, further impacting the functions of T regulatory cells. Additionally, the biological underpinnings of these unfavorable wound healing conditions are multifactorial, including various processes, such as: ischemia, hypoxia, low nutrient levels, and altered cell metabolic pathways, among others, all of which are thought to trigger anergy in immune cells and destabilize adaptive immune responses. As a result, impaired wound healing is common in CTI. Herein, we review the altered innate and adaptive immune cells and their metabolic status and responses following CTI, and discuss the role a multi-pronged immunomodulatory approach may play in facilitating improved outcomes for afflicted patients.  相似文献   

20.
Bone is crucial for the support of muscles and the protection of vital organs, and as a reservoir of calcium and phosphorus. Bone is one of the most metabolically active tissues and is continuously renewed to adapt to the changes required for healthy functioning. To maintain normal cellular and physiological bone functions sufficient oxygen is required, as evidence has shown that hypoxia may influence bone health. In this scenario, this review aimed to analyze the molecular mechanisms involved in hypoxia-induced bone remodeling alterations and their possible clinical consequences. Hypoxia has been associated with reduced bone formation and reduced osteoblast matrix mineralization due to the hypoxia environment inhibiting osteoblast differentiation. A hypoxic environment is involved with increased osteoclastogenesis and increased bone resorptive capacity of the osteoclasts. Clinical studies, although with contradictory results, have shown that hypoxia can modify bone remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号