首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.  相似文献   

2.
The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems.  相似文献   

3.
Background: α-cyclodextrin (α-CD) is one of the dietary fibers that may have a beneficial effect on cholesterol and/or glucose metabolism, but its efficacy and mode of action remain unclear. Methods: In the present study, we examined the anti-hyperglycemic effect of α-CD after oral loading of glucose and liquid meal in mice. Results: Administration of 2 g/kg α-CD suppressed hyperglycemia after glucose loading, which was associated with increased glucagon-like peptide 1 (GLP-1) secretion and enhanced hepatic glucose sequestration. By contrast, 1 g/kg α-CD similarly suppressed hyperglycemia, but without increasing secretions of GLP-1 and insulin. Furthermore, oral α-CD administration disrupts lipid micelle formation through its inclusion of lecithin in the gut luminal fluid. Importantly, prior inclusion of α-CD with lecithin in vitro nullified the anti-hyperglycemic effect of α-CD in vivo, which was associated with increased intestinal mRNA expressions of SREBP2-target genes (Ldlr, Hmgcr, Pcsk9, and Srebp2). Conclusions: α-CD elicits its anti-hyperglycemic effect after glucose loading by inducing lecithin inclusion in the gut lumen and activating SREBP2, which is known to induce cholecystokinin secretion to suppress hepatic glucose production via a gut/brain/liver axis.  相似文献   

4.
Isoliquiritigenin (ILTG) possesses many pharmacological properties. However, its poor solubility and stability in water hinders its wide applications. The solubility of bioactive compounds can often be enhanced through preparation and delivery of various cyclodextrin (CD) inclusion complexes. The 6-O-α-d-maltosyl-β-CD (G2-β-CD), as one of the newest developments of CDs, has high aqueous solubility and low toxicity, especially stable inclusion characteristics with bioactive compounds. In this work, we for the first time construct and characterize the supermolecular structure of ILTG/G2-β-CD by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD). The solubility of ILTG in water at 25 °C rises from 0.003 to 0.717 mg/mL by the encapsulation with G2-β-CD. Our experimental observations on the presence of the ILTG/G2-β-CD inclusion complex are further supported by the ONIOM(our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations, typically substantiating these supermolecular characteristics, such as detailed structural assignments, preferred binding orientations, selectivity, solvent effects, interaction energies and forces of the ILTG/G2-β-CD inclusion complex. Our results have elucidated how ILTG interacts with G2-β-CD, demonstrating the primary host-guest interactions between ILTG and G2-β-CD, characterized by hydrogen bonds, hydrophobic interactions, electrostatic forces, and conformational effects, are favored for the formation of the ILTG/G2-β-CD inclusion.  相似文献   

5.
6.
Niemann–Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-β-CD in Npc1 gene-deficient (Npc1−/−) mice. Intracerebroventricular HP-β-CD inhibited cerebellar Purkinje cell damage in Npc1−/− mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1−/− mice. Repeated doses of intracerebroventricular HP-β-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1−/− mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-β-CD treatment.  相似文献   

7.
Aspirin (ASA) has attracted wide interest of numerous scientists worldwide thanks to its chemopreventive and chemotherapeutic effects, particularly in colorectal cancer (CRC). Incorporation of selenium (Se) atom into ASA has greatly increased their anti-tumoral efficacy in CRC compared with the organic counterparts without the Se functionality, such as the promising antitumoral methylseleno-ASA analog (1a). Nevertheless, the efficacy of compound 1a in cancer cells is compromised due to its poor solubility and volatile nature. Thus, 1a has been formulated with native α-, β- and γ-cyclodextrin (CD), a modified β-CD (hydroxypropyl β-CD, HP-β-CD) and Pluronic F127, all of them non-toxic, biodegradable and FDA approved. Water solubility of 1a is enhanced with β- and HP- β-CDs and Pluronic F127. Compound 1a forms inclusion complexes with the CDs and was incorporated in the hydrophobic core of the F127 micelles. Herein, we evaluated the cytotoxic potential of 1a, alone or formulated with β- and HP- β-CDs or Pluronic F127, against CRC cells. Remarkably, 1a formulations demonstrated more sustained antitumoral activity toward CRC cells. Hence, β-CD, HP-β-CD and Pluronic F127 might be excellent vehicles to improve pharmacological properties of organoselenium compounds with solubility issues and volatile nature.  相似文献   

8.
Cordyline terminalis leaf extract (aqCT) possesses abundant polyphenols and other bioactive compounds, which are encapsulated in gelatin–polyethylene glycol–tyramine (GPT)/alpha-cyclodextrin (α-CD) gels to form the additional functional materials for biomedical applications. In this study, the gel compositions are optimized, and the GPT/α-CD ratios equal to or less than one half for solidification are found. The gelation time varies from 40.7 min to 5.0 h depending on the increase in GPT/α-CD ratios and aqCT amount. The aqCT extract disturbs the hydrogen bonding and host–guest inclusion of GPT/α-CD gel networks, postponing the gelation. Scanning electron microscope observation shows that all gels with or without aqCT possess a microarchitecture and porosity. GPT/α-CD/aqCT gels could release polyphenols from 110 to 350 nmol/mL at the first hour and sustainably from 5.5 to 20.2 nmol/mL for the following hours, which is controlled by feeding the aqCT amount and gel properties. GPT/α-CD/aqCT gels achieved significant antioxidant activity through a 100% scavenging DPPH radical. In addition, all gels are non-cytotoxic with a cell viability more than 85%. Especially, the GPT3.75α-CD10.5aqCT gels with aqCT amount of 3.1–12.5 mg/mL immensely enhanced the cell proliferation of GPT3.75α-CD10.5 gel without extract. These results suggest that the inherent bioactivities of aqCT endowed the resulting GPT/α-CD/aqCT gels with effective antioxidant and high biocompatibility, and natural polyphenols sustainably release a unique platform for a drug delivery system or other biomedical applications.  相似文献   

9.
Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,β-unsaturated β-diketone, α,β-unsaturated ketone and β′-hydroxy-α,β-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,β-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas β′-hydroxy-α,β-unsaturated ketones and α,β-unsaturated β-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,β-unsaturated ketone complex for help in drug design.  相似文献   

10.
Alzheimer’s disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8–40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production.  相似文献   

11.
Specifically designed electrochemical sensors are standing out as alternatives to enzyme-based biosensors for the sensing of metabolites. In our previous works, we developed a new electrochemical assay based on cyclodextrin supramolecular complexes. A ferrocene moiety (Fc) was chemically modified by phenylboronic acid (4-Fc-PB) and combined with two different kinds of cyclodextrins (CDs): β-CD and β-CD modified by a dipicolylamine group (dpa-p-HB-β-CDs) for the sensing of fructose and adenosine-triphosphate (ATP), respectively. The aim of the present work is to better comprehend the features underlining the aforementioned complex formation. For the first time, a study about inclusion phenomena between the 4-Fc-PB electroactive probe with β-CD and with dpa-p-HB-β-CD was performed by using nuclear magnetic resonance (NMR) analysis. In particular, we focused on providing insights on the interaction involved and on the calculation of the binding constant of 4-Fc-PB/β-CD supramolecular complex, and elucidation about a drift in the time observed during the control experiments of the electrochemical measurements for the 4-Fc-PB/dpa-p-HB-β-CD supramolecular complex. In this sense, this paper represents a step further in the explanation of the electrochemical results obtained, pointing out the nature of the interactions present both in the formation of the inclusions and in the sensing with the analytes.  相似文献   

12.
In this work, a comparison between two different preparation methods for the improvement of dissolution rate of an antifungal agent is presented. Poly(ε-caprolactone) (PCL) electrospun fibers and β-cyclodextrin (β-CD) complexes, which were produced via an electrospinning process and an inclusion complexation method, respectively, were addressed for the treatment of fungal infections. Voriconazole (VRCZ) drug was selected as a model drug. PCL nanofibers were characterized on the basis of morphology while phase solubility studies for β-CDs complexes were performed. Various concentrations (5, 10, 15 and 20 wt %) of VRCZ were loaded to PCL fibers and β-CD inclusions to study the in vitro release profile as well as in vitro antifungal activity. The results clearly indicated that all formulations showed an improved VRCZ solubility and can inhibit fungi proliferation.  相似文献   

13.
The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.  相似文献   

14.
O. basilicum leaves produce essential oils (LEO) rich in monoterpenes. The short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin (β-CD) has been employed to improve the pharmacological properties of LEO. We assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD), on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with either LEO/β-CD (25, 50 or 100 mg/kg, p.o.), LEO (25 mg/kg, p.o.), tramadol (TRM 4 mg/kg, i.p.) or vehicle (saline), and 60 min after treatment behavioral parameters were assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey), motor coordination (Rota-rod) and muscle strength (Grip Strength Metter) in a mice fibromyalgia model. After 27 days, we evaluated the central nervous system (CNS) pathways involved in the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. The differential scanning analysis (DSC), thermogravimetry/derivate thermogravimetry (TG/DTG) and infrared absorption spectroscopy (FTIR) curves indicated that the products prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were able to significantly increase Fos protein expression. Together, our results provide evidence that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic non-inflammatory pain as fibromyalgia.  相似文献   

15.
R(+)-α-lipoic acid (RALA) is a naturally-occurring substance, and its protein-bound form plays significant role in the energy metabolism in the mitochondria. RALA is vulnerable to a variety of physical stimuli, including heat and UV light, which prompted us to study the stability of its complexes with cyclodextrins (CDs). In this study, we have prepared and purified a crystalline RALA-αCD complex and evaluated its properties in the solid state. The results of 1H NMR and PXRD analyses indicated that the crystalline RALA-αCD complex is a channel type complex with a molar ratio of 2:3 (RALA:α-CD). Attenuated total reflection/Fourier transform infrared analysis of the complex showed the shift of the C=O stretching vibration of RALA due to the formation of the RALA-αCD complex. Raman spectroscopic analysis revealed the significant weakness of the S–S and C–S stretching vibrations of RALA in the RALA-αCD complex implying that the dithiolane ring of RALA is almost enclosed in glucose ring of α-CD. Extent of this effect was dependent on the direction of the excitation laser to the hexagonal morphology of the crystal. Solid-state NMR analysis allowed for the chemical shift of the C=O peak to be precisely determined. These results suggested that RALA was positioned in the α-CD cavity with its 1,2-dithiolane ring orientated perpendicular to the plane of the α-CD ring.  相似文献   

16.
A novel thermosensitive folic acid (FA)-targeted succinylated poly (ethylene-co-vinyl alcohol) (EVOH) (EVOHS-FA) nanocarrier was synthesized for the specific delivery of epirubicin (EPI) to MCF-7 breast cancer cell line. Three different ratios of synthesized EVOH-Suc were reacted with FA. The structure of the desired products (EVOHS40-FA, EVOHS60-FA and EVOHS80-FA) was confirmed by 1H NMR and FTIR techniques. Nanoparticles were obtained by nano-precipitation procedure using DMSO/H2O as solvent/anti-solvent. The particle size, zeta potential, entrapment efficacy and in vitro release profile of the final formulations in different temperatures were measured. The optimized nanoparticles had the particle size of 214 ± 8.5 nm, zeta potential of ?29.6 mV, PDI of 0.198 ± 0.04, and a high encapsulation efficiency that released the drug efficiently within 450 h at the temperature of 40 °C compared to 37 °C. The morphology of nanoparticles was studied by scanning electron microscopy. The in vitro cytotoxicity was evaluated using the MTT assay on MCF-7 cell lines in response to temperatures of 37 and 40 °C. The MTT assay indicated that the targeted nanoparticles carrying EPI were significantly more cytotoxic than the non-targeted nanoparticles and the free drug at 40 °C.  相似文献   

17.
The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, β-, γ-, and 2-hydroxypropyl-β-CD (2-HP- β-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest–host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and β-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-β-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host–guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.  相似文献   

18.
The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP.  相似文献   

19.
α-Lipoic acid (ALA) has a chiral center at the C6 position, and exists as two enantiomers, R(+)-ALA (RALA) and S(−)-ALA (SALA). RALA is naturally occurring, and is a cofactor for mitochondrial enzymes, therefore playing a major role in energy metabolism. However, RALA cannot be used for pharmaceuticals or nutraceuticals because it readily polymerizes via a 1,2-dithiolane ring-opening when exposed to light or heat. So, it is highly desired to find out the method to stabilize RALA. The purpose of this study is to provide the spectroscopic information of stabilized RALA and SALA through complexation with cyclodextrins (CDs), α-CD, β-CD and γ-CD and to examine the physical characteristics of the resultant complexes in the solid state. The RALA-CD structures were elucidated based on the micro fourier transform infrared (FT-IR) and Raman analyses. The FT-IR results showed that the C=O stretching vibration of RALA appeared at 1717 cm−1 and then shifted on formation of the RALA-CD complexes. The Raman spectra showed that the S–S and C–S stretching vibrations for RALA at 511 cm−1 (S–S), 631 cm−1 (C–S) and 675 cm−1 (C–S) drastically weakened and almost disappeared upon complexation with CDs. Several peaks indicative of O–H vibrations also shifted or changed in intensity. These results indicate that RALA and CDs form host-guest complexes by interacting with one another.  相似文献   

20.
The L10P single nucleotide polymorphism (SNP) is located in the signal sequence of the transforming growth factor β1 (TGFβ1) gene. The proline-encoding (Pro-) allele of this SNP has been associated with an increased breast cancer risk, which has been attributed to the elevated secretion of this TGFβ1 variant observed in vitro and in male subjects. Here we investigated the association of the L10P SNP with serum levels of TGFβ1 in female breast cancer patients and controls. We genotyped the L10P SNP in 276 breast cancer patients and 255 controls. Serum TGFβ1 concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in a subset of the study population (n = 211). We found no evidence for an association of the L10P SNP with breast cancer risk (per-allele odds ratio: 0.91; 95% confidence interval: 0.71–1.16). However, patients with the Pro/Pro genotype exhibited a significantly younger age at breast cancer onset (55.2 ± 14.3 years) than Leu/Leu patients (60.6 ± 13.6 years; p = 0.04), which may reflect the ability of TGFβ to promote tumor progression. Mean TGFβ1 serum levels of Pro-allele carriers were 39.4 ± 7.4 ng/mL, whereas those of Leu/Leu subjects were 37.6 ± 6.0 ng/mL (p = 0.07). Thus, compared to a previous study of male subjects, we observed only a modest increase, if any, in TGFβ1 levels of female Pro-allele carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号