首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.  相似文献   

3.
Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial–mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.  相似文献   

4.
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.  相似文献   

5.
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.  相似文献   

6.
The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.  相似文献   

7.
The inflammatory process contributes to immune tolerance as well as to tumor progression and metastasis. By releasing extracellular signals, cancerous cells constantly shape their surrounding microenvironment through their interactions with infiltrating immune cells, stromal cells and components of extracellular matrix. Recently, the pro-inflammatory interleukin 17 (IL-17)-producing T helper lymphocytes, the Th17 cells, and the IL-17/IL-17 receptor (IL-17R) axis gained special attention. The IL-17 family comprises at least six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F. Secreted as disulfide-linked homo- or heterodimers, the IL-17 bind to the IL-17R, a type I cell surface receptor, of which there are five variants, IL-17RA to IL-17RE. This review focuses on the current advances identifying the promoting role of IL-17 in carcinogenesis, tumor metastasis and resistance to chemotherapy of diverse solid cancers. While underscoring the IL-17/IL-17R axis as promising immunotherapeutic target in the context of cancer managing, this knowledge calls upon further in vitro and in vivo studies that would allow the development and implementation of novel strategies to combat tumors.  相似文献   

8.
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.  相似文献   

9.
Triple-negative breast cancer is the most common and most deadly cancer among women. Radiation is a mainstay of treatment, administered after surgery, and used in the hope that any remaining cancer cells will be destroyed. While the cancer cell response is normally the focus of radiation therapy, little is known about the tumor microenvironment response after irradiation. It is widely reported that increased collagen expression and deposition are associated with cancer progression and poor prognosis in breast cancer patients. Aside from the classical fibrotic response, ratios of collagen isoforms have not been studied in a radiated tumor microenvironment. Here, we created one healthy co-culture of stromal fibroblasts and adipose-derived stem cells, and one triple-negative breast cancer co-culture, made of stromal fibroblasts, adipose derived stem cells, and triple-negative breast cancer cells. After irradiation, growth and decellularization of co-cultures, we reseeded the breast cancer cells for 24 h and analyzed the samples using mass spectrometry. Proteomic analysis revealed that collagen VI, a highly oncogenic collagen isoform linked to breast cancer, was decreased in the irradiated cancer co-culture. This indicates that the anti-cancer impact of radiation may be not only cell ablative, but also influential in creating a less oncogenic microenvironment.  相似文献   

10.
Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100–200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called “BiCyclA”, was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.  相似文献   

11.
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.  相似文献   

12.
Triple-negative breast cancer (TNBC) is a group of heterogeneous and refractory breast cancers with the absence of estrogen receptor (ER), progesterone receptor (PgR) and epidermal growth factor receptor 2 (HER2). Over the past decade, antibody drug conjugates (ADCs) have ushered in a new era of targeting therapy. Since the epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) are over expressed on triple-negative breast cancer, we developed novel ADCs by conjugating benzylguanine (BG)-modified monomethyl auristatin E (MMAE) to EpCAM- and EGFR-specific SNAP-tagged single chain antibody fragments (scFvs). Rapid and efficient conjugation was achieved by SNAP-tag technology. The binding and internalization properties of scFv-SNAP fusion proteins were confirmed by flow cytometry and fluorescence microscopy. The dose-dependent cytotoxicity was evaluated in cell lines expressing different levels of EGFR and EpCAM. Both ADCs showed specific cytotoxicity to EGFR or EpCAM positive cell lines via inducing apoptosis at a nanomolar concentration. Our study demonstrated that EGFR specific scFv-425-SNAP-BG-MMAE and EpCAM-specific scFv-EpCAM-SNAP-BG-MMAE could be promising ADCs for the treatment of TNBC.  相似文献   

13.
14.
Vascular endothelial cells express glycoprotein 130 (gp130), which is utilized as a signaling receptor by cytokines in the interleukin-6 (IL-6) family. Several IL-6 family cytokines can be found in the circulatory system during physiological or pathological conditions, and may influence endothelial function and response. This study evaluated and compared the cellular and molecular responses induced by IL-6 family cytokines in human endothelial cells. A proteomic analysis showed that IL-6 family cytokines induce the release of a range of proteins from endothelial cells, such as C-C motif chemokine ligand 23, hepatocyte growth factor, and IL-6. Pathway analysis indicated that gp130-signaling in endothelial cells regulates several functions related to angiogenesis and immune cell recruitment. The present investigation also disclosed differences and similarities between different IL-6 family cytokines in their ability to induce protein release and regulate gene expression and intracellular signaling, in regards to which oncostatin M showed the most pronounced effect. Further, this study showed that soluble gp130 preferentially blocks trans-signaling-induced responses, but does not affect responses induced by classic signaling. In conclusion, IL-6 family cytokines induce both specific and overlapping molecular responses in endothelial cells, and regulate genes and proteins involved in angiogenesis and immune cell recruitment.  相似文献   

15.
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.  相似文献   

16.
Activation of the tumor-associated stroma to support tumor growth is a common feature observed in different cancer entities. This principle is exemplified by cancer-associated fibroblasts (CAFs), which are educated by the tumor to shape its development across all stages. CAFs can alter the extracellular matrix (ECM) and secrete a variety of different molecules. In that manner they have the capability to affect activation, survival, proliferation, and migration of other stromal cells and cancer cell themselves. Alteration of the ECM, desmoplasia, is a common feature of breast cancer, indicating a prominent role for CAFs in shaping tumor development in the mammary gland. In this review, we summarize the multiple roles CAFs play in mammary carcinoma. We discuss experimental and clinical strategies to interfere with CAFs function in breast cancer. Moreover, we highlight the issues arising from CAFs heterogeneity and the need for further research to identify CAFs subpopulation(s) that can be targeted to improve breast cancer therapy.  相似文献   

17.
In recent years, three PARP inhibitors and three CDK4/6 inhibitors have been approved by the FDA for the treatment of recurrent ovarian cancer and advanced ER-positive breast cancer, respectively. However, the clinical benefits of the PARPi or CDK4/6i monotherapy are not as satisfied as expected and benefit only a fraction of patients. Current studies have shown therapeutic synergy for combinations of PARPi and CDK4/6i in breast and ovarian cancers with homologous recombination (HR) proficiency, which represents a new synthetic lethal strategy for treatment of these cancers regardless HR status. Thus, any compounds or strategies that can combine PARP and CDK4/6 inhibition will likely have great potential in improving clinic outcomes and in benefiting more patients. In this study, we developed a novel compound, ZC-22, that effectively inhibited both PARP and CDK4/6. This dual-targeting compound significantly inhibited breast and ovarian cancer cells by inducing cell cycle arrest and severe DNA damage both in vitro and in vivo. Interestingly, the efficacy of ZC-22 is even higher than the combination of PARPi Olaparib and CDK4/6i Abemaciclib in most breast and ovarian cancer cells, suggesting that it may be an effective alternative for the PARPi and CDK4/6i combination therapy. Moreover, ZC-22 sensitized breast and ovarian cancer cells to cisplatin treatment, a widely used chemotherapeutic agent. Altogether, our study has demonstrated the potency of a novel CDK4/6 and PARP dual inhibitor, which can potentially be developed into a monotherapy or combinatorial therapy with cisplatin for breast and ovarian cancer patients with HR proficiency.  相似文献   

18.
Stemness and epithelial–mesenchymal plasticity are widely studied in the circulating tumor cells of breast cancer patients because the roles of both processes in tumor progression are well established. An important property that should be taken into account is the ability of CTCs to disseminate, particularly the viability and apoptotic states of circulating tumor cells (CTCs). Recent data demonstrate that apoptosis reversal promotes the formation of stem-like tumor cells with pronounced potential for dissemination. Our study focused on the association between different apoptotic states of CTCs with short- and long-term treatment outcomes. We evaluated the association of viable CTCs, CTCs with early features of apoptosis, and end-stage apoptosis/necrosis CTCs with clinicopathological parameters of breast cancer patients. We found that the proportion of circulating tumor cells with features of early apoptosis is a perspective prognosticator of metastasis-free survival, which also correlates with the neoadjuvant chemotherapy response in breast cancer patients. Moreover, we establish that apoptotic CTCs are associated with the poor response to neoadjuvant chemotherapy, and metastasis-free survival expressed at least two stemness markers, CD44 and CD133.  相似文献   

19.
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.  相似文献   

20.
Treatment of triple-negative breast cancer (TNBC) remains challenging because of the heterogeneity of the disease and lack of single targetable driving mutations. TNBC does not rely on estrogen, progesterone or epidermal growth factor receptors and is associated with aggressive disease progression and poor prognosis. TNBC is also characterized by resistance to chemotherapeutics, and response to immunotherapies is limited despite promising results in a subset of TNBC patients. MicroRNAs (miRNAs) have emerged as significant drivers of tumorigenesis and tumor progression in triple-negative breast cancer (TNBC) and present unique opportunities to target various components of the TNBC microenvironment for improved efficacy against this difficult to treat cancer. Effects of miRNAs on multiple targets may improve response rates in the context of this genetically and biologically heterogeneous disease. In this review, we offer a comprehensive view of miRNA regulation in TNBC, treatment challenges presented by TNBC in the context of the tumor microenvironment and stem cell subpopulations, and current and emerging miRNA-based therapeutic strategies targeting various components of the TNBC microenvironment. In addition, we offer insight into novel targets that have potential for treating TNBC through multiple mechanisms in the tumor microenvironment simultaneously and those that may be synergistic with standard chemotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号