首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor–endothelial cell interactions represent an essential mechanism in spinal metastasis. Ephrin-B2–EphB4 communication induces tumor cell repulsion from the endothelium in metastatic melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2–EphB4 signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimulation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2. After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.  相似文献   

2.
3.
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell–cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell–cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph–ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph–Eph interfaces. One Eph–Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor–receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.  相似文献   

4.
Osteosarcoma is the most common type of primary malignant bone cancer, and it is associated with high rates of pulmonary metastasis. Integrin αvβ3 is critical for osteosarcoma cell migratory and invasive abilities. Chemokine (C-C motif) ligand 4 (CCL4) has diverse effects on different cancer cells through its interaction with its specific receptor, C-C chemokine receptor type 5 (CCR5). Analysis of mRNA expression in human osteosarcoma tissue identified upregulated levels of CCL4, integrin αv and β3 expression. Similarly, an analysis of records from the Gene Expression Omnibus (GEO) dataset showed that CCL4 was upregulated in human osteosarcoma tissue. Importantly, the expression of both CCL4 and integrin αvβ3 correlated positively with osteosarcoma clinical stages and lung metastasis. Analysis of osteosarcoma cell lines identified that CCL4 promotes integrin αvβ3 expression and cell migration by activating the focal adhesion kinase (FAK), protein kinase B (AKT), and hypoxia inducible factor 1 subunit alpha (HIF-1α) signaling pathways, which can downregulate microRNA-3927-3p expression. Pharmacological inhibition of CCR5 by maraviroc (MVC) prevented increases in integrin αvβ3 expression and cell migration. This study is the first to implicate CCL4 as a potential target in the treatment of metastatic osteosarcoma.  相似文献   

5.
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.  相似文献   

6.
Cytoplasmic chromatin fragments (CCF) are recognized by the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS), which activates the cGAS–STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway and promotes the production of inflammatory factors and breast cancer metastasis. However, the mechanisms by which CCF are formed in tumor cells and CCF activation cGAS promotes breast cancer metastasis remain unclear. Here, we report that the enhancer of zeste homolog 2 (EZH2) can promote the formation of CCF and activate the cGAS–STING pathway to promote breast cancer metastasis. Further research found that the EZH2-mediated CCF formation depended on high mobility group A1 (HMGA1), while the stability of EZH2 required ubiquitin-specific peptidase 7 (USP7), indicating that the EZH2–HMGA1–USP7 complex regulated CCF formation. Moreover, EZH2 can activate cGAS through CCF, requiring USP7 to deubiquitinate cGAS and stabilize cGAS. In vivo experimental results showed that EZH2 could promote breast cancer metastasis through CCF. Our findings highlight a new target for breast cancer metastasis. Targeting the EZH2–CCF–cGAS axis may be a potential therapeutic strategy for inhibiting breast cancer metastasis.  相似文献   

7.
Epithelial–mesenchymal transition (EMT) is important for the initial steps of metastasis. Although it is well accepted that the nucleoside diphosphate kinase NME1 is a metastasis suppressor, its effect on EMT remains poorly documented, as does that of its closely related isoform, NME2. Here, by using gene silencing, inactivation and overexpression strategies in a variety of cellular models of cancer, we show that NME1 is a powerful inhibitor of EMT. Genetic manipulation of NME2, by contrast, had no effect on the EMT phenotype of cancer cells, indicating a specific function of NME1 in EMT regulation. Loss of NME1 in epithelial cancer cells resulted in a hybrid phenotype intermediate between epithelial and mesenchymal cells, which is known to be associated with cells with a highly metastatic character. Conversely, overexpression of NME1 in mesenchymal cancer cells resulted in a more epithelial phenotype. We found that NME1 expression was negatively associated with EMT markers in many human cancers and was reduced in human breast tumor cell lines with the aggressive ‘triple-negative’ phenotype when compared to human breast tumor cell lines positive for estrogen receptor. We show that NME1, but not NME2, is an inhibitor of essential concerted intracellular signaling pathways involved in inducing EMT, including the AKT and MAPK (ERK, p38, and JNK) pathways. Additionally, NME1 depletion considerably altered the distribution of E-cadherin, a gatekeeper of the epithelial phenotype, shifting it from the plasma membrane to the cytosol and resulting in less E-cadherin on the cell surface than in control cells. Functional aggregation and dispersion assays demonstrated that inactivation of NME1 decreases E-cadherin-mediated cell–cell adhesion. We conclude that NME1, but not NME2, acts specifically to inhibit EMT and prevent the earliest stages of metastasis.  相似文献   

8.
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12–CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12–CXCR4/CXCR7 axis as a treatment strategy for CRC.  相似文献   

9.
The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology.  相似文献   

10.
Cell–cell communication proteins Eph and ephrin constitute the largest family of receptor tyrosine kinases (RTKs). They are distinguished by the fact that both receptors and ligands are membrane-bound, and both can drive intracellular signaling in their respective cells. Ever since these RTKs have been found to be involved in cancer development, strategies to target them therapeutically have been actively pursued. However, before this goal can be rationally achieved, the contributions of either Eph receptors or their ephrin ligands to cancer development and progression should be scrutinized in depth. To assess the clinical pertinence of this concern, we performed a systematic review and meta-analysis of the prognostic/predictive value of EphB2 and its multiple cognate ephrin ligands in breast cancer. We found that EphB2 has prognostic value, as indicated by the association of higher EphB2 expression levels with lower distant metastasis-free survival (DMFS), and the association of lower EphB2 expression levels with poorer relapse-free survival (RFS). We also found that higher EphB2 expression could be a prognostic factor for distant metastasis, specifically in the luminal subtypes of breast cancer. EFNB2 showed a marked correlation between higher expression levels and shorter DMFS. EFNA5 or EFNB1 overexpression is correlated with longer RFS. Increased EFNB1 expression is correlated with longer OS in lymph node (LN)-negative patients and the luminal B subtype. Higher levels of EFNB2 or EFNA5 are significantly correlated with shorter RFS, regardless of LN status. However, while this correlation with shorter RFS is true for EFNB2 in all subtypes except basal, it is also true for EFNA5 in all subtypes except HER2+. The analysis also points to possible predictive value for EphB2. In systemically treated patients who have undergone either endocrine therapy or chemotherapy, we found that higher expression of EphB2 is correlated with better rates of RFS. Bearing in mind the limitations inherent to any mRNA-based profiling method, we complemented our analysis with an immunohistochemical assessment of expression levels of both the EphB2 receptor and cognate ephrin ligands. We found that the latter are significantly more expressed in cancers than in normal tissues, and even more so in invasive and metastatic samples than in ductal carcinoma in situ (DCIS). Finally, in an in vitro cellular model of breast cancer progression, based on H-Ras-transformation of the MCF10A benign mammary cell line, we observed dramatic increases in the mRNA expression of EphB2 receptor and EFNB1 and EFNB2 ligands in transformed and invasive cells in comparison with their benign counterparts. Taken together, these data show the clinical validity of a model whereby EphB2, along with its cognate ephrin ligands, have dual anti- and pro-tumor progression effects. In so doing, they reinforce the necessity of further biological investigations into Ephs and ephrins, prior to using them in targeted therapies.  相似文献   

11.
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell–cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.  相似文献   

12.
Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and metastasis in vitro. DU145 and PC3 cells were incubated with low-dosed curcumin (0.1–0.4 µg/mL) and subsequently irradiated with 1.65 J/cm2 visible light for 5 min. Controls remained untreated and/or non-irradiated. Cell growth, proliferation, apoptosis, adhesion, and chemotaxis were evaluated, as was cell cycle regulating protein expression (CDK, Cyclins), and integrins of the α- and β-family. Curcumin or light alone did not cause any significant effects on tumor growth, proliferation, or metastasis. However, curcumin combined with light irradiation significantly suppressed tumor growth, adhesion, and migration. Phosphorylation of CDK1 decreased and expression of the counter-receptors cyclin A and B was diminished. Integrin α and β subtypes were also reduced, compared to controls. Irradiation distinctly enhances the anti-tumor potential of curcumin in vitro and may hold promise in treating prostate cancer.  相似文献   

13.
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.  相似文献   

14.
Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.  相似文献   

15.
Layman summaryHER2 is an oncogenic driver in a subset of breast cancer. Despite the fact that there are the options of several anti-HER2 targeted therapies, most patients with metastatic HER2+ breast cancer die from the disease. Therapies to overcome treatment resistance in the metastatic settings (including brain metastasis) are actively being pursued. Recently, cell cycle inhibitors (CDK 4/6 inhibitors) have been approved to manage hormone receptor-positive breast cancer, and have encountered tremendous success. The cell cycle signaling proteins, Cyclin D-CDK4/6, are downstream of HER2 and play a key role in cellular proliferation. Moreover, cell cycle inhibitors have the capacity to cross the blood–brain barrier. Here, we review the published literature with regard to the rationale for CDK4/6-directed therapies in HER2+ breast cancer.AbstractThe development of HER2-targeted therapies has dramatically improved patient survival and patient management and increased the quality of life in the HER2+ breast cancer patient population. Due to the activation of compensatory pathways, patients eventually suffer from resistance to HER2-directed therapies and develop a more aggressive disease phenotype. One of these mechanisms is the crosstalk between ER and HER2 signaling, especially the CDK4/6-Cyclin D-Rb signaling axis that is commonly active and has received attention for its potential role in regulating tumor progression. CDK 4/6 inhibitors interfere with the binding of cell-cycle-dependent kinases (CDKs) with their cognate partner cyclins, and forestall the progression of the cell cycle by preventing Rb phosphorylation and E2F release that consequentially leads to cancer cell senescence. CDK 4/6 inhibitors, namely, palbociclib, ribociclib, and abemaciclib, in combination with anti-estrogen therapies, have shown impressive outcomes in hormonal receptor-positive (HR+) disease and have received approval for this disease context. As an extension of this concept, preclinical/clinical studies incorporating CDK 4/6 inhibitors with HER2-targeted drugs have been evaluated and have shown potency in limiting tumor progression, restoring therapeutic sensitivity, and may improving the management of the disease. Currently, several clinical trials are examining the synergistic effects of CDK 4/6 inhibitors with optimized HER2-directed therapies for the (ER+/-) HER2+ population in the metastatic setting. In this review, we aim to interrogate the burden of HER2+ disease in light of recent treatment progress in the field and examine the clinical benefit of CDK 4/6 inhibitors as a replacement for traditional chemotherapy to improve outcomes in HER2+ breast cancer.  相似文献   

16.
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.  相似文献   

17.
Prostate cancer is a major cause of cancer-related mortality in men in developed countries. The compound, 4-acetylantroquinonol B (4AAQB), is isolated from Antrodia cinnamomea (commonly known as Niu-Chang-Chih), which has been shown to inhibit cancer growth. However, the anticancer activity of 4AAQB has not previously been examined in prostate cancer. This study aimed to investigate the effect of 4AAQB on cancer and angiogenesis, as well as to explore its mechanism of action. Human prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) were used in cell viability, cell migration, and cell cycle functional assays to evaluate the anticancer and antiangiogenic efficacy of 4AAQB in vitro. The effects of 4AAQB in vivo were determined using xenograft and angiogenesis models. The signaling events downstream of 4AAQB were also examined. The 4AAQB compound inhibited PC3 cell growth and migration, and reduced in vivo cancer growth, as shown in a subcutaneous xenograft model. Furthermore, 4AAQB inhibited HUVEC migration, tube formation, and aortic ring sprouting; it also reduced neovascularization in a Matrigel implant angiogenesis assay in vivo. The 4AAQB compound also decreased metastasis in the PC3 prostate cancer model in vivo. Serum or vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2), phosphoinositide 3-kinase (PI3K)/Ak strain transforming (Akt), and extracellular signal-regulated kinase ½ (ERK ½) phosphorylation were attenuated by 4AAQB in both PC3 and HUVEC. In conclusion, 4AAQB is a potential candidate for prostate cancer therapy.  相似文献   

18.
The strong association between diabetes mellitus type 2 and cancer is observed. The incidence of both diseases is increasing globally due to the interaction between them. Recent studies suggest that there is also an association between cancer incidence and anti-diabetic medications. An inhibitor of dipeptidyl-peptidase 4 (DPP-4), sitagliptin, is used in diabetes treatment. We examined the influence of sitagliptin alone or in combination with a cytostatic drug (paclitaxel) on the development of epithelial ovarian cancer cells and the process of metastasis. We examined migration, invasiveness, apoptosis, and metalloproteinases (MMPs) and their inhibitors’ (TIMPs) production in two human ovarian cancer cell lines. Sitagliptin induced apoptosis by caspase 3/7 activation in paclitaxel-treated SKOV-3 and OVCAR-3 cells. Sitagliptin maintained paclitaxel influence on ERK and Akt signaling pathways. Sitagliptin additionally reduced migration and invasiveness of SKOV-3 cells. There were distinct differences of metalloproteinases production in sitagliptin-stimulated ovarian cancer cells in both cell lines, despite their identical histological classification. Only the SKOV-3 cell line expressed MMPs and TIMPs. SKOV-3 cells co-treated with sitagliptin and paclitaxel decreased concentrations of MMP-1, MMP-2, MMP-7, MMP-10, TIMP-1, TIMP-2. The obtained data showed that sitagliptin used with paclitaxel may be considered as a possibility of pharmacological modulation of intracellular transmission pathways to improve the response to chemotherapy.  相似文献   

19.
20.
Undetected micrometastasis plays a key role in the metastasis of cancer in colorectal cancer (CRC) patients. The aim of this study is to identify a biomarker of CRC patients with liver metastasis through the detection of circulating tumor cells (CTCs). Microarray and bioinformatics analysis of 10 CRC cancer tissue specimens compared with normal adjacent tissues revealed that 31 genes were up-regulated (gene expression ratio of cancer tissue to paired normal tissue > 2) in the cancer patients. We used a weighted enzymatic chip array (WEnCA) including 31 prognosis-related genes to investigate CTCs in 214 postoperative stage I–III CRC patients and to analyze the correlation between gene expression and clinico-pathological parameters. We employed the immunohistochemistry (IHC) method with polyclonal mouse antibody against DVL1 to detect DVL1 expression in 60 CRC patients. CRC liver metastasis occurred in 19.16% (41/214) of the patients. Using univariate analysis and multivariate proportional hazards regression analysis, we found that DVL1 mRNA overexpression had a significant, independent predictive value for liver metastasis in CRC patients (OR: 5.764; 95% CI: 2.588–12.837; p < 0.0001 on univariate analysis; OR: 3.768; 95% CI: 1.469–9.665; p = 0.006 on multivariate analysis). IHC staining of the immunoreactivity of DVL1 showed that DVL1 was localized in the cytoplasm of CRC cells. High expression of DVL1 was observed in 55% (33/60) of CRC tumor specimens and was associated significantly with tumor depth, perineural invasion and liver metastasis status (all p < 0.05). Our experimental results demonstrated that DVL1 is significantly overexpressed in CRC patients with liver metastasis, leading us to conclude that DVL1 could be a potential prognostic and predictive marker for CRC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号