首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Drought stress is an important factor that severely affects crop yield and quality. Autophagy has a crucial role in the responses to abiotic stresses. In this study, we explore TaNBR1 in response to drought stress. Expression of the TaNBR1 gene was strongly induced by NaCl, PEG, and abscisic acid treatments. The TaNBR1 protein is localized in the Golgi apparatus and autophagosome. Transgenic Arabidopsis plants overexpressing TaNBR1 exhibited reduced drought tolerance. When subjected to drought stress, compared to the wild-type (WT) lines, the transgenic overexpressing TaNBR1 plants had a lower seed germination rate, relative water content, proline content, and reduced accumulation of antioxidant enzymes, i.e., superoxide dismutase, peroxidase, and catalase, as well as higher chlorophyll losses, malondialdehyde contents, and water loss. The transgenic plants overexpressing TaNBR1 produced much shorter roots in response to mannitol stress, in comparison to the WT plants, and they exhibited greater sensitivity to abscisic acid treatment. The expression levels of the genes related to stress in the transgenic plants were affected in response to drought stress. Our results indicate that TaNBR1 negatively regulates drought stress responses by affecting the expression of stress-related genes in Arabidopsis.  相似文献   

2.
3.
4.
5.
6.
Plant proline-rich proteins (PRPs) are cell wall proteins that occur in the plant kingdom and are involved in plant development and stress response. In this study, 9 PRP genes were identified from the apple genome and a comprehensive analysis of the PRP family was conducted, including gene structures, phylogenetic analysis, chromosome mapping, and so on. The expression of MdPRPs varied among tissues and in response to different types of stresses. MdPRP4 and MdPRP7 were induced by five detected stress treatments, including heat, drought, abscisic acid, cold, and salt; the expression patterns of the others varied under different types of stress. Subcellular localization showed that MdPRPs mainly functioned in the cytoplasm, except for MdPRP1 and MdPRP5, which also functioned in the nucleus. When MdPRP6 was overexpressed in tobacco, the transgenic plants showed higher tolerance to high temperature (48 °C) compared with wild-type (WT) plants. The transgenic plants showed milder wilting, a lower accumulation of electrolyte leakage, MDA and ROS, and a higher level of chlorophyll and SOD and POD activity, indicating that MdPRP6 may be an important gene in apples for heat stress tolerance. Overall, this study suggested that MdPRPs are critically important for the ability of apple responses to stresses.  相似文献   

7.
8.
Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.  相似文献   

9.
10.
11.
12.
13.
Serine/arginine-rich (SR) proteins are important splicing factors in plant development and abiotic/hormone-related stresses. However, evidence that SR proteins contribute to the process in woody plants has been lacking. Using phylogenetics, gene synteny, transgenic experiments, and RNA-seq analysis, we identified 24 PtSR genes and explored their evolution, expression, and function in Popolus trichocarpa. The PtSR genes were divided into six subfamilies, generated by at least two events of genome triplication and duplication. Notably, they were constitutively expressed in roots, stems, and leaves, demonstrating their fundamental role in P. trichocarpa. Additionally, most PtSR genes (~83%) responded to at least one stress (cold, drought, salt, SA, MeJA, or ABA), and, especially, cold stress induced a dramatic perturbation in the expression and/or alternative splicing (AS) of 18 PtSR genes (~75%). Evidentially, the overexpression of PtSCL30 in Arabidopsis decreased freezing tolerance, which probably resulted from AS changes of the genes (e.g., ICE2 and COR15A) critical for cold tolerance. Moreover, the transgenic plants were salt-hypersensitive at the germination stage. These indicate that PtSCL30 may act as a negative regulator under cold and salt stress. Altogether, this study sheds light on the evolution, expression, and AS of PtSR genes, and the functional mechanisms of PtSCL30 in woody plants.  相似文献   

14.
Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.  相似文献   

15.
16.
17.
Caragana korshinskii, an important vegetation restoration species with economic and ecological benefits in the arid region of northwest China, is characterized by significant drought tolerance. However, the underlying molecular mechanisms by which miRNAs confer this trait in C. korshinskii are unclear. Here, we investigate the effect of CkmiR2119 on drought tolerance and identified its target gene, CkBI-1. A negative correlation of CkmiR2119 and CkBI-1 in both stems and leaves in a drought gradient treatment followed by target gene validation suggest that CkmiR2119 might negatively regulate CkBI-1. Consistently, a decrease in the expression of the CkBI-1 gene was observed after both transient transformation and stable transformation of CkamiR2119 in tobacco (Nicotiana tabacum). Moreover, the physiological analysis of CkamiR2119 and CkBI-1 transgenic plants further indicate that CkmiR2119 can enhance the drought tolerance of C. korshinskii in two aspects: (i) downregulating CkBI-1 expression to accelerate vessel maturation in stems; (ii) contributing to a higher level of CkBI-1 in mesophyll cells to inhibit programmed cell death (PCD). This work reveals that CkmiR2119 can increase plants’ drought tolerance by downregulating the expression of CkBI-1, providing a theoretical basis to improve plants’ ability to withstand stress tolerance by manipulating miRNAs.  相似文献   

18.
19.
Drought and salinity can result in cell dehydration and water unbalance in plants, which seriously diminish plant growth and development. Cellular water homeostasis maintained by aquaporin is one of the important strategies for plants to cope with these two stresses. In this study, a stress-induced aquaporin, ZxPIP1;3, belonging to the PIP1 subgroup, was identified from the succulent xerophyte Zygophyllum xanthoxylum. The subcellular localization showed that ZxPIP1;3-GFP was located in the plasma membrane. The overexpression of ZxPIP1;3 in Arabidopsis prompted plant growth under favorable condition. In addition, it also conferred salt and drought tolerance with better water status as well as less ion toxicity and membrane injury, which led to more efficient photosynthesis and improved growth vigor via inducing stress-related responsive genes. This study reveals the molecular mechanisms of xerophytes’ stress tolerance and provides a valuable candidate that could be used in genetic engineering to improve crop growth and stress tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号