首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermidine/spermine N1-acetyltransferase (SSAT) functions as a critical enzyme in maintaining the homeostasis of polyamines, including spermine, spermidine, and putrescine, in mammalian cells. SSAT is a catalytic enzyme that indirectly regulates cellular physiologies and pathways through interaction with endogenous and exogenous polyamines. Normally, SSAT exhibits only at a low cellular level, but upon tumorigenesis, the expression, protein level, and activities of SSAT are altered. The alterations induce cellular damages, including oxidative stress, cell cycle arrest, DNA dynamics, and proliferation by influencing cellular mechanisms and signaling pathways. The expression of SSAT has been reported in various studies to be altered in different cancers, and it has been correlated with tumor development and progression. Tumor grades and stages are associated with the expression levels of SSAT. SSAT can be utilized as a target for substrate binding, and excreted metabolites may be used as a novel cancer biomarker. There is also potential for SSAT to be developed as a therapeutic target. Polyamine analogs could increase SSAT expression and increase the cytotoxicity of chemotherapy to tumor cells. Drugs targeting polyamines and SSAT expression have the potential to be developed into new cancer treatments in the future.  相似文献   

2.
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.  相似文献   

3.
MiRNAs (microRNAs) are the most abundant family of small noncoding RNAs in mammalian cells. Increasing evidence shows that miRNAs are crucial regulators of individual development and cell homeostasis by controlling various biological processes. Therefore, miRNA dysfunction can lead to human diseases, especially in cancers with high morbidity and mortality worldwide. MiRNAs play different roles in these processes. In recent years, studies have found that miR-424-5p is closely related to the occurrence, development, prognosis and treatment of tumors. This review discusses how miR-424-5p plays a role in different kinds of cancers from different stages of tumors, including its roles in (i) promoting or inhibiting tumorigenesis, (ii) regulating tumor development in the tumor microenvironment and (iii) participating in cancer chemotherapy. This review provides a deep discussion of the latest findings on miR-424-5p and its importance in cancer, as well as a mechanistic analysis of the role of miR-424-5p in various tissues through target gene verification and pathway analysis.  相似文献   

4.
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.  相似文献   

5.
Bishambar Dayal  Norman H. Ertel 《Lipids》1997,32(12):1331-1340
Cancers of the gastrointestinal tract account for a large proportion of neoplastic diseases which afflict humans. The etiology of gastrointestinal cancer has been attributed in part to exogenous carcinogens, such as food substances and environmental pollutants. Recent hypotheses suggest that carcinogens may arise endogenously. Evidence suggests that some bile acids and their isomeric metabolites may be involved in the pathogenesis of colon cancer. However, the mechanism responsible for their cancer-promoting effect is not clear. We and others propose that one mechanism for the mitogenic effects of bile acids may be N-nitrosation of their glycine and taurine amides; human gastric aspirates do contain small quantities of N-nitroso compounds of other substrates. Many foods contain nitrites and nitrates, which can react with bile acid amides to form N-nitroso derivatives. Our recent studies demonstrated the potential for N-nitroso conjugate formation from ursodeoxycholic acid, a 7β-epimer of chenodeoxycholic acid used as a drug Actigall® to dissolve gallstones. The N-nitroso derivative of this compound, a direct-acting carcinogen, has a long half-life and, once nitrosated, is stable enough to survive passage through the gastrointestinal tract. We describe the synthesis of N-nitrosated derivatives of various bile acid conjugates and mechanisms of decomposition of (Z)- and (E)-bile acid diazoates. Studies of the effects of enzymes such as cholylglycine hydrolase on the N-nitroso bile acid conjugates and their reaction with DNA are also described. These studies may have important implications in the interplay of diet with endogenous substrates in the etiology of cancers of the stomach, liver, and colon.  相似文献   

6.
Pan-Gyn cancers entail 1 in 5 cancer cases worldwide, breast cancer being the most commonly diagnosed and responsible for most cancer deaths in women. The high incidence and mortality of these malignancies, together with the handicaps of taxanes—first-line treatments—turn the development of alternative therapeutics into an urgency. Taxanes exhibit low water solubility that require formulations that involve side effects. These drugs are often associated with dose-limiting toxicities and with the appearance of multi-drug resistance (MDR). Here, we propose targeting tubulin with compounds directed to the colchicine site, as their smaller size offer pharmacokinetic advantages and make them less prone to MDR efflux. We have prepared 52 new Microtubule Destabilizing Sulfonamides (MDS) that mostly avoid MDR-mediated resistance and with improved aqueous solubility. The most potent compounds, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methylaminobenzenesulfonamide 38, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 42, and N-benzyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 45 show nanomolar antiproliferative potencies against ovarian, breast, and cervix carcinoma cells, similar or even better than paclitaxel. Compounds behave as tubulin-binding agents, causing an evident disruption of the microtubule network, in vitro Tubulin Polymerization Inhibition (TPI), and mitotic catastrophe followed by apoptosis. Our results suggest that these novel MDS may be promising alternatives to taxane-based chemotherapy in chemoresistant Pan-Gyn cancers.  相似文献   

7.
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.  相似文献   

8.
Polyamines are involved in various biological functions, including cell proliferation, differentiation, gene regulation, etc. Recently, it was found that polyamines exhibit biphasic effects on gene expression: promotion and inhibition at low and high concentrations, respectively. Here, we compared the effects of three naturally occurring tetravalent polyamines, spermine (SPM), thermospermine (TSPM), and N4-aminopropylspermidine (BSPD). Based on the single DNA observation with fluorescence microscopy together with measurements by atomic force microscopy revealed that these polyamines induce shrinkage and then compaction of DNA molecules, at low and high concentrations, respectively. We also performed the observation to evaluate the effects of these polyamine isomers on the activity of gene expression by adapting a cell-free luciferase assay. Interestingly, the potency of their effects on the DNA conformation and also on the inhibition of gene expression activity indicates the highest for TSPM among spermine isomers. A numerical evaluation of the strength of the interaction of these polyamines with negatively charged double-strand DNA revealed that this ordering of the potency corresponds to the order of the strength of the attractive interaction between phosphate groups of DNA and positively charged amino groups of the polyamines.  相似文献   

9.
In chromatin, 5‐methylcytosine (mC), which represents the fifth nucleobase in genomic DNA, plays a role as an inducer of epigenetic changes. Tumor cells exhibit aberrant DNA methylation patterns, and inhibition of human DNA cytosine‐5 methyltransferase (DNMT), which is responsible for generating mC in CpG sequences, is an effective strategy to treat various cancers. Here, we describe the design, synthesis, and evaluation of the properties of 2‐amino‐4‐halopyridine‐C‐nucleosides (dXP) and oligodeoxyribonucleotides (ODNs) containing dXP as a novel mechanism‐based inhibitor of DNMTs. The designed ODN containing XPpG forms a complex with DNMTs by covalent bonding through a nucleophilic aromatic substitution (SNAr) reaction, and its cell proliferation activity is investigated. This study suggests that dXP in a CpG sequence of DNA could serve as a potential nucleic acid drug lead in cancer chemotherapy and a useful chemical probe for studies of epigenetics. Our molecular design using a SNAr reaction would be useful for DNMTs and other protein–DNA interactions.  相似文献   

10.
Oral cancer is one of the most common cancers worldwide, especially in South Central Asia. It has been suggested that cancer stem cells (CSC) play crucial roles in tumor relapse and metastasis, and approaches to target CSC may lead to promising results. Here, aldehyde dehydrogenase 1 (ALDH1) and CD44 were utilized to isolate CSCs of oral cancer. Butylidenephthalide, a bioactive phthalide compound from Angelica sinensis, was tested for its anti-CSC effects. MTT assay showed that a lower concentration of butylidenephthalide was sufficient to inhibit the proliferation of patient-derived ALDH1+/CD44+ cells without affecting normal cells. Administration of butylidenephthalide not only reduced ALDH1 activity and CD44 expression, it also suppressed the migration, invasion, and colony formation abilities of ALDH1+/CD44+ cells using a transwell system and clonogenic assay. A patient-derived xenograft mouse model supported our in vitro findings that butylidenephthalide possessed the capacity to retard tumor development. We found that butylidenephthalide dose-dependently downregulated the gene and protein expression of Sox2 and Snail. Our results demonstrated that overexpression of Snail in ALDH1-/CD44- (non-CSCs) cells induced the CSC phenotypes, whereas butylidenephthalide treatment successfully diminished the enhanced self-renewal and propagating properties. In summary, this study showed that butylidenephthalide may serve as an adjunctive for oral cancer therapy.  相似文献   

11.
Inorganic phosphate (Pi) is an essential nutrient for the maintenance of cells. In healthy mammals, extracellular Pi is maintained within a narrow concentration range of 0.70 to 1.55 mM. Mammalian cells depend on Na+/Pi cotransporters for Pi absorption, which have been well studied. However, a new type of sodium-independent Pi transporter has been identified. This transporter assists in the absorption of Pi by intestinal cells and renal proximal tubule cells and in the reabsorption of Pi by osteoclasts and capillaries of the blood–brain barrier (BBB). Hyperphosphatemia is a risk factor for mineral deposition, the development of diseases such as osteoarthritis, and vascular calcifications (VCs). Na+-independent Pi transporters have been identified and biochemically characterized in vascular smooth muscle cells (VSMCs), chondrocytes, and matrix vesicles, and their involvement in mineral deposition in the extracellular microenvironment has been suggested. According to the growth rate hypothesis, cancer cells require more phosphate than healthy cells due to their rapid growth rates. Recently, it was demonstrated that breast cancer cells (MDA-MB-231) respond to high Pi concentration (2 mM) by decreasing Na+-dependent Pi transport activity concomitant with an increase in Na+-independent (H+-dependent) Pi transport. This Pi H+-dependent transport has a fundamental role in the proliferation and migratory capacity of MDA-MB-231 cells. The purpose of this review is to discuss experimental findings regarding Na+-independent inorganic phosphate transporters and summarize their roles in Pi homeostasis, cancers and other diseases, such as osteoarthritis, and in processes such as VC.  相似文献   

12.
PADs are a group of calcium-dependent enzymes that play key roles in inflammatory pathologies and have diverse roles in cancers. PADs cause irreversible post-translational modification of arginine to citrulline, leading to changes in protein function in different cellular compartments. PAD isozyme diversity differs throughout phylogeny in chordates, with five PAD isozymes in mammals, three in birds, and one in fish. While the roles for PADs in various human cancers are mounting (both in regards to cancer progression and epigenetic regulation), investigations into animal cancers are scarce. The current pilot-study therefore aimed at assessing PAD isozymes in a range of animal cancers across the phylogeny tree. In addition, the tissue samples were assessed for total protein deimination and histone H3 deimination (CitH3), which is strongly associated with human cancers and also indicative of gene regulatory changes and neutrophil extracellular trap formation (NETosis). Cancers were selected from a range of vertebrate species: horse, cow, reindeer, sheep, pig, dog, cat, rabbit, mink, hamster, parrot, and duck. The cancers chosen included lymphoma, kidney, lung, testicular, neuroendocrine, anaplastic, papilloma, and granulosa cell tumour. Immunohistochemical analysis revealed that CitH3 was strongly detected in all of the cancers assessed, while pan-deimination detection was overall low. Both PAD2 and PAD3 were the most predominantly expressed PADs across all of the cancers assessed, while PAD1, PAD4, and PAD6 were overall expressed at lower, albeit varying, levels. The findings from this pilot study provide novel insights into PAD-mediated roles in different cancers across a range of vertebrate species and may aid in the understanding of cancer heterogeneity and cancer evolution.  相似文献   

13.
Gut microbiota are reported to be associated with many diseases, including cancers. Several bacterial taxa have been shown to be associated with cancer development or response to treatment. However, longitudinal microbiota alterations during the development of cancers are relatively unexplored. To better understand how microbiota changes, we profiled the gut microbiota composition from prostate cancer-bearing mice and control mice at five different time points. Distinct gut microbiota differences were found between cancer-bearing mice and control mice. Akkermansiaceae was found to be significantly higher in the first three weeks in cancer-bearing mice, which implies its role in the early stage of cancer colonization. We also found that Bifidobacteriaceae and Enterococcaceae were more abundant in the second and last sampling week, respectively. The increments of Akkermansiaceae, Bifidobacteriaceae and Enterococcaceae were previously found to be associated with responses to immunotherapy, which suggests links between these bacteria families and cancers. Additionally, our function analysis showed that the bacterial taxa carrying steroid biosynthesis and butirosin and neomycin biosynthesis were increased, whereas those carrying naphthalene degradation decreased in cancer-bearing mice. Our work identified the bacteria taxa altered during prostate cancer progression and provided a resource of longitudinal microbiota profiles during cancer development in a mouse model.  相似文献   

14.
The pivotal roles of miRNAs in carcinogenesis, metastasis, and prognosis have been demonstrated recently in various cancers. This study intended to investigate the specific roles of hsa-miR-654-5p in lung cancer, which is, in general, rarely discussed. A series of closed-loop bioinformatic functional analyses were integrated with in vitro experimental validation to explore the overall biological functions and pan-cancer regulation pattern of miR-654-5p. We found that miR-654-5p abundance was significantly elevated in LUAD tissues and correlated with patients’ survival. A total of 275 potential targets of miR-654-5p were then identified and the miR-654-5p-RNF8 regulation axis was validated in vitro as a proof of concept. Furthermore, we revealed the tumor-suppressing roles of miR-654-5p and demonstrated that miR-654-5p inhibited the lung cancer cell epithelial-mesenchymal transition (EMT) process, cell proliferation, and migration using target-based, abundance-based, and ssGSEA-based bioinformatic methods and in vitro validation. Following the construction of a protein–protein interaction network, 11 highly interconnected hub genes were identified and a five-genes risk scoring model was developed to assess their potential prognostic ability. Our study does not only provide a basic miRNA-mRNA-phenotypes reference map for understanding the function of miR-654-5p in different cancers but also reveals the tumor-suppressing roles and prognostic values of miR-654-5p.  相似文献   

15.
DNA cytosine 5‐methyltransferase (DNMT) catalyzes methylation at the C5 position of the cytosine residues in the CpG sequence. Aberrant DNA methylation patterns are found in cancer cells. Therefore, inhibition of human DNMT is an effective strategy for treating various cancers. The inhibitors of DNMT have an electron‐deficient nucleobase because this group facilitates attack by the catalytic Cys residue in DNMTs. Recently, we reported the synthesis and properties of mechanism‐based modified nucleosides, 2‐amino‐4‐halopyridine‐C‐nucleosides (dXP), as inhibitors of DNMT. To develop a more efficient inhibitor of DNMT for oligonucleotide therapeutics, oligodeoxyribonucleotides (ODNs) containing other nucleoside analogues, which react more quickly with DNMT, are needed. Herein, we describe the design, synthesis, and evaluation of the properties of 2‐amino‐3‐cyano‐4‐halopyridine‐C‐nucleosides (dXPCN) and ODNs containing dXPCN, as more reactive inhibitors of DNMTs. Nucleophilic aromatic substitution (SNAr) of the designed nucleosides, dXPCN, was faster than that of dXP, and the ODN containing dXPCN effectively formed a complex with DNMTs. This study suggests that the incorporation of an electron‐withdrawing group would be an effective method to increase reactivity toward the nucleophile of the DNMTs, while maintaining high specificity.  相似文献   

16.
17.
18.
The present study describes the synthesis and anticancer activity of novel octahedral PtIV complexes with cyclohexyl functionalized ethylenediamine‐N,N′‐diacetate‐type ligands. Molecular mechanics calculations and density functional theory analysis revealed that s‐cis is the preferred geometry of these PtIV complexes with tetradentate‐coordinated (S,S)‐ethylenediamine‐N,N′‐di‐2‐(3‐cyclohexyl)propanoate. The viability of cancer cell lines (U251 human glioma, C6 rat glioma, L929 mouse fibrosarcoma, and B16 human melanoma) was assessed by measuring mitochondrial dehydrogenase activity and lactate dehydrogenase release. Cell‐cycle distribution, oxidative stress, caspase activation, and induction of autophagy were analyzed by flow cytometry using appropriate fluorescent reporter dyes. The cytotoxic activity of novel PtIV complexes against various cancer cell lines (IC50 range: 1.9–8.7 μM ) was higher than that of cisplatin (IC50 range: 10.9–67.0 μM ) and proceeded through completely different mechanisms. Cisplatin induced caspase‐dependent apoptosis associated with the cytoprotective autophagic response. In contrast, the new PtIV complexes caused rapid, caspase‐independent, oxidative stress‐mediated non‐apoptotic cell death characterized by massive cytoplasmic vacuolization, cell membrane damage, and the absence of protective autophagy.  相似文献   

19.
Cancer remains a leading cause of death worldwide, despite many advances being made in recent decades. Changes in the tumor microenvironment, including dysregulated immunity, may contribute to carcinogenesis and cancer progression. The cysteinyl leukotriene (CysLT) pathway is involved in several signal pathways, having various functions in different tissues. We summarized major findings of studies about the roles of the CysLT pathway in cancer. Many in vitro studies suggested the roles of CysLTs in cell survival/proliferation via CysLT1 receptor (CysLT1R). CysLT1R antagonism decreased cell vitality and induced cell death in several types of cancer cells, such as colorectal, urological, breast, lung and neurological malignancies. CysLTs were also associated with multidrug resistance of cancer, and CysLT1R antagonism might reverse chemoresistance. Some animal studies demonstrated the beneficial effects of CysLT1R antagonist in inhibiting tumorigenesis and progression of some cancer types, particularly colorectal cancer and lung cancer. The expression of CysLT1R was shown in various cancer tissues, particularly colorectal cancer and urological malignancies, and higher expression was associated with a poorer prognosis. The chemo-preventive effects of CysLT1R antagonists were demonstrated in two large retrospective cohort studies. In summary, the roles of the CysLT pathway in cancer have been delineated, whereas further studies are still warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号