首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Psoriasis (PS) is a skin disease with autoimmune features mediated by immune cells, which typically presents inflammatory erythematous plaques, and is associated with many comorbidities. PS exhibits excessive keratinocyte proliferation, and a high number of immune cells, including macrophages, neutrophils, Th1 and Th17 lymphocytes, and mast cells (MCs). MCs are of hematopoietic origin, derived from bone marrow cells, which migrate, mature, and reside in vascularized tissues. They can be activated by antigen-provoking overexpression of proinflammatory cytokines, and release a number of mediators including interleukin (IL)-1 and IL-33. IL-1, released by activated keratinocytes and MCs, stimulates skin macrophages to release IL-36—a powerful proinflammatory IL-1 family member. IL-36 mediates both innate and adaptive immunity, including chronic proinflammatory diseases such as psoriasis. Suppression of IL-36 could result in a dramatic improvement in the treatment of psoriasis. IL-36 is inhibited by IL-36Ra, which binds to IL-36 receptor ligands, but suppression can also occur by binding IL-38 to the IL-36 receptor (IL-36R). IL-38 specifically binds only to IL-36R, and inhibits human mononuclear cells stimulated with IL-36 in vitro, sharing the effect with IL-36Ra. Here, we report that inflammation in psoriasis is mediated by IL-1 generated by MCs—a process that activates macrophages to secrete proinflammatory IL-36 inhibited by IL-38. IL-37 belongs to the IL-1 family, and broadly suppresses innate inflammation via IL-1 inhibition. IL-37, in murine models of inflammatory arthritis, causes the suppression of joint inflammation through the inhibition of IL-1. Therefore, it is pertinent to think that IL-37 can play an inhibitory role in inflammatory psoriasis. In this article, we confirm that IL-38 and IL-37 cytokines emerge as inhibitors of inflammation in psoriasis, and hold promise as an innovative therapeutic tool.  相似文献   

2.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.  相似文献   

3.
辅助性T细胞17(T helper cells 17,Th17)是新近发现的一种辅助性T细胞,该类细胞在机体的抗微生物免疫中起非常重要的作用,也与很多自身免疫性疾病的发生有一定的关系,如过敏、糖尿病、类风湿性关节炎等。Th17细胞是与Th1及Th2细胞不同的T细胞亚类,可分泌IL-17A、IL-17F、IL-21、IL-22等细胞因子。本文就Th17细胞的基本生物学功能、与感染性疾病及自身免疫性疾病发生的相关性作一综述。  相似文献   

4.
For many years, the role of interleukin-2 (IL-2) in autoimmune responses was established as a cytokine possessing strong pro-inflammatory activity. Studies of the past few years have changed our knowledge on IL-2 in autoimmune chronic inflammation, suggesting its protective role, when administered at low-doses. The disrupted balance between regulatory and effector T cells (Tregs and Teffs, respectively) is a characteristic of autoimmune diseases, and is dependent on homeostatic cytokines, including IL-2. Actually, inherent defects in the IL-2 signaling pathway and/or levels leading to Treg compromised function and numbers as well as Th17 expansion have been attributed to autoimmune disorders. In this review, we discuss the role of IL-2 in the pathogenesis of autoimmune diseases. In particular, we highlight the impact of the dysregulated IL-2 pathway on disruption of the Treg/Th17 balance, reversal of which appears to be a possible mechanism of the low-dose IL-2 treatment. The negative effects of IL-2 on the differentiation of follicular helper T cells (Tfh) and pathogenic Th17 cells, both of which contribute to autoimmunity, is emphasized in the paper as well. We also compare the current IL-2-based therapies of animal and human subjects with immune-mediated diseases aimed at boosting the Treg population, which is the most IL-2-dependent cell subset desirable for sufficient control of autoimmunity. New perspectives of therapeutic approaches focused on selective delivery of IL-2 to inflamed tissues, thus allowing local activity of IL-2 to be combined with its reduced systemic and pleiotropic toxicity, are also proposed in this paper.  相似文献   

5.
It has been suggested that natural killer (NK) cell activity and Th1 immunity may be involved in the pathogenesis of preeclampsia. This study aimed to investigate the immunophenotypes of NK cells and type 1/type 2 immunity in both decidua and maternal peripheral blood between normal (n=11) and preeclamptic pregnant women (n=20) by flow cytometry. The results showed that no significant difference was observed between patients and controls by detecting CD56+CD69+ and CD56+CD94+ NK cells in both peripheral blood and decidua. Moreover, in preeclamptic patients, decreased percentages of Tc2 and Th2 cells and the increased ratios of Tc1/Tc2 were determined in both decidua and maternal peripheral blood. In addition, the ratio of Th1/Th2 in peripheral blood also increased. There was no significant difference of immunophenotypes of uNK cells between preeclampsia and normal pregnancy. Local decidua and systematic immunity did not correlate with each other. These results suggest that the type 1/type 2 immunity shifted to type 1 immunity including Th1 and Tc1 cells may contribute to the patho-genesis of preeclampsia.  相似文献   

6.
Dendritic cells (DC) are heterogeneous cell populations essential for both inducing immunity and maintaining immune tolerance. Chronic inflammatory contexts, such as found in rheumatoid arthritis (RA), severely affect the distribution and the function of DC, contributing to defective tolerance and fueling inflammation. In RA, the synovial fluid of patients is enriched by a subset of DC that derive from monocytes (Mo-DC), which promote deleterious Th17 responses. The characterization of environmental factors in the joint that impact on the development and the fate of human Mo-DC is therefore of great importance in RA. When monocytes leave the blood and infiltrate inflamed synovial tissues, the process of differentiation into Mo-DC can be influenced by interactions with soluble factors such as cytokines, local acidosis and dysregulated synoviocytes. Other molecular factors, such as the citrullination process, can also enhance osteoclast differentiation from Mo-DC, favoring bone damages in RA. Conversely, biotherapies used to control inflammation in RA, modulate also the process of monocyte differentiation into DC. The identification of the environmental mediators that control the differentiation of Mo-DC, as well as the underlying molecular signaling pathways, could constitute a major breakthrough for the development of new therapies in RA.  相似文献   

7.
Human uveitis is an autoimmune disease of the central nervous system that is characterized by ocular inflammation with the involvement of uveitogenic Th1 and Th17 responses. In experimental autoimmune uveitis (EAU), the animal model for human uveitis, both responses are proven to be critical in disease development. Therefore, targeting both Th1 and Th17 cells has therapeutic implication for disease resolution. IL-27 is a multifunctional cytokine that can either promote or inhibit T cell responses and is implicated in both autoimmune and infectious diseases. The aim of this study is to characterize the role of IL-27/IL-27R signaling in regulating uveitogenic Th1/Th17 responses in EAU. By immunizing IL-27Rα−/− mice and their wild-type (WT) littermates for EAU, we demonstrated that IL-27 signaling deficiency exacerbated EAU with severe ocular inflammation and impairment of visual function. Furthermore, there was a significant increase in the eye-infiltrating Th1 and Th17 cells in IL-27Rα−/− EAU mice compared to WT. Their retinal antigen-specific Th1 and Th17 responses were also significantly increased, as represented by the elevation of their signature cytokines, IFN-γ and IL-17A, respectively. We also observed the upregulation of another pathogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), from effector T cells in IL-27Rα−/− EAU mice. Mechanistic studies confirmed that IL-27 inhibited GM-CSF production from Th17 cells. In addition, the induction of IL-10 producing type 1 regulatory T (Tr1) cells was impaired in IL-27Rα−/− EAU mice. These results identified that IL-27 signaling plays a suppressive role in EAU by regulating multiple CD4+ cell subsets, including the effector Th1 and Th17 cells and the regulatory Tr1 cells. Our findings provide new insights for therapeutic potential in controlling uveitis by enhancing IL-27 signaling.  相似文献   

8.
Endometriosis is a common gynaecological disorder characterized by the ectopic growth of endometrial tissue outside the uterine cavity. It is associated with chronic pelvic inflammation and autoimmune reactivity manifesting by autoantibody production and abrogated cellular immune responses. Endometriotic peritoneal fluid contains various infiltrating leucocyte populations and a bulk of proinflammatory and immunoregulatory cytokines. However, the nature and significance of the peritoneal milieu in women with endometriosis still remains obscure. Therefore, the aim of the present study was to investigate the immunoregulatory activity of the peritoneal fluid (PF) from women with endometriosis. The peritoneal fluid samples were collected during laparoscopic surgery from 30 women with and without endometriosis. Immunoregulatory cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF) and chemokines (CCL2, CCL5, CXCL8 and CXCL9) were evaluated in PF and culture supernatants generated by unstimulated and CD3/CD28/IL-2-stimulated CD4+ T cells cultured in the presence of PF. The effect of PF on the generation of Treg and Th17 cells in CD4+ T cell cultures, as well as the natural cytotoxic activity of peripheral blood mononuclear cells, was also investigated. Concentrations of IL-6, IL-10, CCL2, CXCL8 and CXCL9 were significantly upregulated in the PF from women with endometriosis when compared to control women, whereas concentrations of other cytokines and chemokines were unaffected. The culturing of unstimulated and CD3/CD28/IL-2-stimulated CD4+ T cells in the presence of endometriotic PF resulted in the downregulation of their IL-2, IFN-γ, IL-17A and TNF production as compared to culture medium alone. On the other side, endometriotic PF significantly stimulated the production of IL-4 and IL-10. Endometriotic PF also stimulated the release of CCL2 and CXCL8, whereas the production of CCL5 and CXCL9 was downregulated. Endometriotic PF stimulated the generation of Treg cells and had an inhibitory effect on the generation of Th17 cells in cultures of CD4+ T cells. It also inhibited the NK cell cytotoxic activity of the peripheral blood lymphocytes. These results strongly imply that the PF from patients with endometriosis has immunoregulatory/immunosuppressive activity and shifts the Th1/Th2 cytokine balance toward the Th2 response, which may account for deviation of local and systemic immune responses. However, a similar trend, albeit not a statistically significant one, was also observed in case of PF from women without endometriosis, thus suggesting that peritoneal milieu may in general display some immunoregulatory/immunosuppressive properties. It should be stressed, however, that our present observations were made on a relatively small number of PF samples and further studies are needed to reveal possible mechanism(s) responsible for this phenomenon.  相似文献   

9.
Cardiovascular disease is the leading cause of death worldwide, and its prevalence is increasing due to the aging of societies. Atherosclerosis, a type of chronic inflammatory disease that occurs in arteries, is considered to be the main cause of cardiovascular diseases such as ischemic heart disease or stroke. In addition, the inflammatory response caused by atherosclerosis confers a significant effect on chronic inflammatory diseases such as psoriasis and rheumatic arthritis. Here, we review the mechanism of action of the main causes of atherosclerosis such as plasma LDL level and inflammation; furthermore, we review the recent findings on the preclinical and clinical effects of antibodies that reduce the LDL level and those that neutralize the cytokines involved in inflammation. The apolipoprotein B autoantibody and anti-PCSK9 antibody reduced the level of LDL and plaques in animal studies, but failed to significantly reduce carotid inflammation plaques in clinical trials. The monoclonal antibodies against PCSK9 (alirocumab, evolocumab), which are used as a treatment for hyperlipidemia, lowered cholesterol levels and the incidence of cardiovascular diseases. Antibodies that neutralize inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have shown promising but contradictory results and thus warrant further research.  相似文献   

10.
The absence of reliable, robust, and non-invasive biomarkers for anti- Programmed cell death protein 1 (PD-1) immunotherapy is an urgent unmet medical need for the treatment of cancer patients. No predictive biomarkers have been established based on the direct assessment of T cell functions, the primary mechanism of action of anti-PD-1 therapy. In this study, we established a model system to test T cell functions modulated by Nivolumab using anti-CD3 monoclonal antibody (mAb)-stimulated peripheral blood mononuclear cells (PBMCs), and characterized T cell functions primarily based on the knowledge gained from retrospective observations of patients treated with anti-PD-1 immunotherapy. During a comprehensive cytokine profile assessment to identify potential biomarkers, we found that Nivolumab increases expression of T helper type 1 (Th1) associated cytokines such as interferon-γ (IFN-γ) and interleukin-2 (IL-2) in a subset of donors. Furthermore, Nivolumab increases production of Th2, Th9, and Th17 associated cytokines, as well as many proinflammatory cytokines such as IL-6 in a subset of donors. Conversely, Nivolumab treatment has no impact on T cell proliferation, expression of CD25, CD69, or Granzyme B, and only modestly increases in the expansion of regulatory T cells. Our results suggest that assessment of cytokine production using a simple PBMC-based T cell functional assay could be used as a potential predictive marker for anti-PD-1 immunotherapy.  相似文献   

11.
Two conjugated linoleic acid (CLA) isomers, cis‐9, trans‐11 (CLAc9t11) and trans‐10, cis‐12 (CLAt10c12), reduce inflammation in a number of animal models, including collagen‐induced arthritis (CA). However, little is known about the ability of individual CLA isomers to prevent autoimmune disease onset. Evidence that mixed isomer CLA drives T helper cell (Th) 1 responses suggests that CLA, or a specific isomer, exacerbates onset of Th1 autoimmune diseases. In two experiments, we examined if prior dietary exposure to CLAt10c12 (experiment 1) or CLAc9t11 (experiment 2) affected the incidence or severity of CA. DBA/1 mice were fed a semi purified diet with either 6% corn oil (CO, w/w), 5.75% CO plus 0.25% CLAt10c12, or 5.5% CO plus 0.5% CLAc9t11 prior to arthritis development. Arthritis incidence and severity, anti‐collagen antibodies, paw cytokines, and hepatic fatty acids were measured. CLAt10c12 had no effect on arthritis incidence but increased arthritic severity (42%, P = 0.02); however, CLAc9t11 decreased arthritis incidence 39% compared to CO fed mice (P = 0.01), but had no effect on disease severity. CLAt10c12‐induced increase in anti‐collagen type II IgG antibodies may be a mechanism by which this isomer increased arthritic severity, and CLAc9t11‐induced increase in Th2 paw cytokines (IL‐4 and IL‐10, P ≤ 0.04) may explain how CLAc9t11 reduced the arthritis incidence. While both isomers are well known to reduce inflammation in arthritic mice, these new data suggest isomer differences when fed prior to autoimmune disease.  相似文献   

12.
Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.  相似文献   

13.
Mast cells (MCs) play critical roles in Th2 immune responses, including the defense against parasitic infections and the initiation of type I allergic reactions. In addition, MCs are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, cancers, allograft rejections, and lifestyle diseases. Whereas antigen-specific IgE is a well-known activator of MCs, which express FcεRI on the cell surface, other receptors for cytokines, growth factors, pathogen-associated molecular patterns, and damage-associated molecular patterns also function as triggers of MC stimulation, resulting in the release of chemical mediators, eicosanoids, and various cytokines. In this review, we focus on the role of interleukin (IL)-10, an anti-inflammatory cytokine, in MC-mediated immune responses, in which MCs play roles not only as initiators of the immune response but also as suppressors of excessive inflammation. IL-10 exhibits diverse effects on the proliferation, differentiation, survival, and activation of MCs in vivo and in vitro. Furthermore, IL-10 derived from MCs exerts beneficial and detrimental effects on the maintenance of tissue homeostasis and in several immune-related diseases including contact hypersensitivity, auto-immune diseases, and infections. This review introduces the effects of IL-10 on various events in MCs, and the roles of MCs in IL-10-related immune responses and as a source of IL-10.  相似文献   

14.
Emerging evidence has demonstrated that Toll-like receptors (TLRs) are associated with autoimmune diseases. In this study, we investigated the role of TLR2 in psoriasis using imiquimod-induced psoriasis-like dermatitis. Although TLR2 signaling is known to play a critical role in the induction of proinflammatory cytokines by immune cells, such as dendritic cells (DCs), macrophages, and monocytes, TLR2 deficiency unexpectedly exacerbated psoriasiform skin inflammation. Importantly, messenger RNA (mRNA) levels of Foxp-3 and IL-10 in the lesional skin were significantly decreased in TLR2 KO mice compared with wild-type mice. Furthermore, flow cytometric analysis of the lymph nodes revealed that the frequency of regulatory T cells (Tregs) among CD4-positive cells was decreased. Notably, stimulation with Pam3CSK4 (TLR2/1 ligand) or Pam2CSK4 (TLR2/6 ligand) increased IL-10 production from Tregs and DCs and the proliferation of Tregs. Finally, adoptive transfer of Tregs from wild-type mice reduced imiquimod-induced skin inflammation in TLR2 KO mice. Taken together, our results suggest that TLR2 signaling directly enhances Treg proliferation and IL-10 production by Tregs and DCs, suppressing imiquimod-induced psoriasis-like skin inflammation. Enhancement of TLR2 signaling may be a new therapeutic strategy for psoriasis.  相似文献   

15.
Chronic inflammation is thought to promote tumorigenesis and metastasis by several mechanisms, such as affecting tumor cells directly, establishing a tumor-supporting microenvironment, enhancing tumor angiogenesis, and suppressing antitumor immunity. In this review, we discuss the recent advances in our understanding of how inflammation induces the immunosuppressive tumor microenvironment, such as increasing the level of pro-inflammatory cytokines, chemokines, and immunosuppressive molecules, inducing immune checkpoint molecules and cytotoxic T-cell exhaustion, and accumulating regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). The suppression of antitumor immunity by inflammation is especially examined in the liver and colorectal cancer. In addition, chronic inflammation is induced during aging and causes age-related diseases, including cancer, by affecting immunity. Therefore, we also discuss the age-related diseases regulated by inflammation, especially in the liver and colon.  相似文献   

16.
Chang HH  Chen CS  Lin JY 《Lipids》2008,43(6):499-506
To evaluate the anti-inflammatory effects of different dietary oils on ovalbumin-sensitized and -challenged mice. Experimental BALB/c mice were fed with different diets containing 5% corn oil [rich in linoleic acid, 18:2n-6 polyunsaturated fatty acids (PUFA), as a control diet], 5% perilla oil (rich in alpha-linolenic acid, 18:3n-3 PUFA) or 5% compound oil containing 50% corn oil and 50% perilla oil, for 5 consecutive weeks. The leukocyte count, inflammatory mediators, and cytokine levels, including proinflammatory and Th1/Th2 cytokines in the bronchoalveolar lavage fluid (BALF) from the mice were determined. The results showed that 5% compound oil administration significantly (P < 0.05) decreased eosinophilic infiltration. Dietary perilla oil could not significantly (P > 0.05) decrease the eosinophil accumulation or the secretions of inflammatory mediators such as prostaglandin E2 (PGE2), histamine, nitric oxide and eotaxin. However, dietary perilla oil significantly (P < 0.05) reduced proinflammatory cytokine (TNF-alpha, IL-1beta and IL-6) and Th1 cytokine (IFN-gamma and IL-2) production. The production of Th2 cytokine IL-10, but not IL-4 and IL-5, was also significantly inhibited by perilla oil administration. The results suggest that dietary perilla oil might alleviate inflammation via decreasing the secretion of pro-inflammatory cytokines in BALF, but failed to regulate the Th1/Th2 balance toward Th1 pole during the Th2-skewed allergic airway inflammation.  相似文献   

17.
18.
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.  相似文献   

19.
White adipose tissue (WAT) is a specialized tissue whose main function is lipid synthesis and triglyceride storage. It is now considered as an active organ secreting a plethora of hormones and cytokines namely adipokines. Discovered in 1994, leptin has emerged as a key molecule with pleiotropic functions. It is primarily recognized for its role in regulating energy homeostasis and food intake. Currently, further evidence suggests its potent role in reproduction, glucose metabolism, hematopoiesis, and interaction with the immune system. It is implicated in both innate and adaptive immunity, and it is reported to contribute, with other adipokines, in the cross-talking networks involved in the pathogenesis of chronic inflammation and immune-related diseases of the musculo-skeletal system such as osteoarthritis (OA) and rheumatoid arthritis (RA). In this review, we summarize the most recent findings concerning the involvement of leptin in immunity and inflammatory responses in OA and RA.  相似文献   

20.
Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA) of both the n-3 and the n-6 family to down-regulate the synthesis of: (i) the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; (ii) the co-stimulatory molecule CD86; as well as (iii) the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号