首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
实体对齐旨在找到位于不同知识图谱中的等效实体,是实现知识融合的重要步骤.当前主流的方法是基于图神经网络的实体对齐方法,这些方法往往过于依赖图的结构信息,导致在特定图结构上训练得到的模型不能拓展应用于其他图结构中.同时,大多数方法未能充分利用辅助信息,例如属性信息.为此,本文提出了一种基于图注意力网络和属性嵌入的实体对齐方法,该方法使用图注意力网络对不同的知识图谱进行编码,引入注意力机制从实体应用到属性,在对齐阶段将结构嵌入和属性嵌入进行结合实现实体对齐效果的提升.在现实世界的3个真实数据集上对本文模型进行了验证,实验结果表明提出的方法在很大程度上优于基准的实体对齐方法.  相似文献   

2.
实体对齐任务目标是在知识图谱间发现更多的等价实体对。目前一些实体对齐方法聚焦实体结构和属性信息,却没有很好地处理两者交互学习的问题。为此,提出一种基于双重注意力和关系语义建模的实体对齐方法,采用双重注意力在属性分类嵌入的基础上学习实体属性和结构的交互特征,采用关系语义建模对实体结构嵌入进行局部语义优化,最后对实体多方面语义特征下的相似度矩阵进行融合。在三个真实数据集上的对齐准确率分别可达到81.00%、83.90%、92.73%,与基准模型相比平均提升了2.62%,实验结果表明提出的方法可以有效地识别出对齐实体对。  相似文献   

3.
赵丹  张俊 《计算机应用研究》2022,39(1):64-69+79
实体对齐任务目标是在知识图谱间发现更多的等价实体对。目前一些实体对齐方法聚焦实体结构和属性信息,却没有很好地处理两者交互学习的问题。为此,提出一种基于双重注意力和关系语义建模的实体对齐方法,采用双重注意力在属性分类嵌入的基础上学习实体属性和结构的交互特征,采用关系语义建模对实体结构嵌入进行局部语义优化,最后对实体多方面语义特征下的相似度矩阵进行融合。在三个真实数据集上的对齐准确率分别可达到81.00%、83.90%和92.73%,与基准模型相比平均提升了2.62%,实验结果表明提出的方法可以有效地识别出对齐实体对。  相似文献   

4.
针对知识图谱推荐算法用户端和项目端建模程度不均且模型复杂度较高等问题, 提出融合知识图谱和轻量图卷积网络的推荐算法. 在用户端, 利用用户相似性生成邻居集合, 将用户及其相似用户的交互记录在知识图谱上多次迭代传播, 增强用户特征表示. 在项目端, 将知识图谱中实体嵌入传播, 挖掘与用户喜好相关的项目信息; 接着, 利用轻量图卷积网络聚合邻域特征获得用户和项目的特征表示, 同时采用注意力机制将邻域权重融入实体, 增强节点的嵌入表示; 最后, 预测用户和项目之间的评分. 实验表明, 在Book-Crossing数据集上, 相较于最优基线, AUCACC分别提高了1.8%和2.3%. 在Yelp2018数据集上, AUCACC分别提高了1.2%和1.4%. 结果证明, 该模型与其他基准模型相比有较好的推荐性能.  相似文献   

5.
针对知识图谱中存在部分属性信息对实体对齐任务影响程度不一致以及实体的邻域信息重要程度不一致的问题,提出了一种结合双层图注意力网络的邻域信息聚合实体对齐方法(two-layer graph attention network entity alignment,TGAEA)。该方法采用双层图神经网络,首先利用第一层网络对实体属性进行注意力系数计算,降低无用属性对实体对齐的影响;随后,结合第二层网络对实体名称、关系和结构等信息进行特征加权,以区分实体邻域信息的重要性;最后,借助自举方法扩充种子实体对,并结合邻域信息相似度矩阵进行实体距离度量。实验表明,在DWY100K数据集上,TGAEA模型相较于当前基线模型,hit@1、hit@10和MRR指标分别提升了4.18%、4.81%和5%,证明了双层图注意力网络在邻域信息聚合实体对齐方面的显著效果。  相似文献   

6.
针对心理医学领域文本段落冗长、数据稀疏、知识散乱且规范性差的问题, 提出一种基于多层级特征抽取能力预训练模型(MFE-BERT)与前向神经网络注意力机制(FNNAttention)的心理医学知识图谱构建方法. MFE-BERT在BERT模型基础上将其内部所有Encoder层特征进行合并输出, 以获取包含更多语义的特征向量, 同时对两复合模型采用FNNAttention机制强化词级关系, 解决长文本段落语义稀释问题. 在自建的心理医学数据集中, 设计MFE-BERT-BiLSTM-FNNAttention-CRF和MFE-BERT-CNN-FNNAttention复合神经网络模型分别进行心理医学实体识别和实体关系抽取, 实体识别F1值达到93.91%, 实体关系抽精确率达到了89.29%, 通过融合文本相似度与语义相似度方法进行实体对齐, 将所整理的数据存储在Neo4j图数据库中, 构建出一个含有3652个实体, 2396条关系的心理医学知识图谱. 实验结果表明, 在MFE-BERT模型与FNNAttention机制的基础上构建心理医学知识图谱切实可行, 提出的改进模型所搭建的心理医学知识图谱可以更好地应用于心理医学信息管理中, 为心理医学数据分析提供参考.  相似文献   

7.
实体对齐是多源数据库融合的有效方法,旨在找出多源知识图谱中的共指实体。近年来,图卷积网络(GCN)已成为实体对齐表示学习的新范式,然而,不同组织构建知识图谱的目标及规则存在巨大差异,要求实体对齐模型能够准确发掘知识图谱之间的长尾实体特征,并且现有的GCN实体对齐模型过于注重关系三元组的结构表示学习,忽略了属性三元组丰富的语义信息。为此,提出一种实体对齐模型,引入动态图注意力网络聚合属性结构三元组表示,降低无关属性结构对实体表示的影响。同时,为缓解知识图谱的关系异构问题,引入多维标签传播对实体邻接矩阵的不同维度进行压缩,将实体特征根据压缩后的知识图谱邻接关系进行传播以获得关系结构表示,最后通过线性规划算法对实体表示相似度矩阵进行迭代以得到最终的对齐结果。在公开数据集ENFR-15K、EN-ZH-15K以及中文医学数据集MED-BBK-9K上进行实验,结果表明,该模型的Hits@1分别为0.942、0.926、0.427,Hits@10分别为0.963、0.952、0.604,MRR分别为0.949、0.939、0.551,消融实验结果也验证了模型中各模块的有效性。  相似文献   

8.
车超  刘迪 《计算机工程》2022,48(3):74-80
实体对齐表示在不同的知识图谱中查找引用相同现实身份的实体。目前主流的基于图嵌入的实体对齐方法中的对齐实体通常具有相似的属性,有效利用属性信息可提升实体对齐效果,同时由于不同知识图谱之间的知识分布差异,仅考虑单个方向的对齐预测会导致预测结果出现偏差。针对上述问题,提出一种改进的跨语言实体对齐方法。利用融合属性信息的双向对齐图卷积网络模型,将前馈神经网络编码实体对应的属性信息与初始的实体嵌入相结合,得到联合属性信息的实体表示,并使用双向对齐机制实现跨语言的实体对齐预测。在3个跨语言数据集上的实验结果表明,该方法通过融合更多的知识图谱信息增强了实体表示能力,并且利用双向对齐机制缓解了数据分布差异问题,相比基于图嵌入的实体对齐方法整体性能更优。  相似文献   

9.
针对现有基于知识图谱的推荐模型仅从用户或项目一端进行特征提取, 从而缺乏对另一端的特征提取的问题, 提出一种基于知识图谱的双端知识感知图卷积推荐模型. 首先, 对于用户、项目及知识图谱中的实体进行随机初始化表征得到初始特征表示; 接着, 采用基于用户和项目的知识感知注意力机制同时从用户、项目两端在知识图谱中进行特征提取; 其次, 使用图卷积网络采用不同的聚合方式聚合知识图谱传播过程中的特征信息并预测点击率; 最后, 为了验证模型的有效性, 在Last.FM和Book-Crossing两个公开数据集上与4个基线模型进行对比实验. 在Last.FM数据集上, AUCF1分别比最优的基线模型提升了4.4%、3.8%, ACC提升了1.1%. 在Book-Crossing数据集上, AUCF1分别提升了1.5%、2.2%, ACC提升了1.4%. 实验结果表明, 本文的模型在AUCF1和ACC指标上比其他的基线模型具有更好的鲁棒性.  相似文献   

10.
基于联合知识表示学习的多模态实体对齐   总被引:1,自引:0,他引:1  
王会勇  论兵  张晓明  孙晓领 《控制与决策》2020,35(12):2855-2864
基于知识表示学习的实体对齐方法是将多个知识图谱嵌入到低维语义空间,通过计算实体向量之间的相似度实现对齐.现有方法往往关注文本信息而忽视图像信息,导致图像中实体特征信息未得到有效利用.对此,提出一种基于联合知识表示学习的多模态实体对齐方法(ITMEA).该方法联合多模态(图像、文本)数据,采用TransE与TransD相结合的知识表示学习模型,使多模态数据能够嵌入到统一低维语义空间.在低维语义空间中迭代地学习已对齐多模态实体之间的关系,从而实现多模态数据的实体对齐.实验结果表明,ITMEA在WN18-IMG数据集中能够较好地实现多模态实体对齐.  相似文献   

11.
图注意力网络(GAT)通过注意力机制聚合节点的邻居信息以提取节点的结构特征,然而并没有考虑网络中潜在的节点相似性特征。针对以上问题,提出了一种考虑网络中相似节点的网络表示学习方法NSGAN。首先,在节点层面上,通过图注意力机制分别学习相似网络和原始网络的结构特征;其次,在图层面上,将两个网络对应的节点嵌入通过基于图层面的注意力机制聚合在一起,生成节点最终的嵌入表示。在三个数据集上进行节点分类实验,NSGAN比传统的图注意力网络方法的准确率提高了约2%。  相似文献   

12.
知识图谱嵌入旨在将实体与关系映射到低维且稠密的向量空间中。目前已有的嵌入模型仍存在以下两个方面的缺陷:现有的模型大多只关注知识图谱的语义信息,而忽略了大量三元组的隐藏信息;现有的模型仅关注了实体的单向信息,而忽略了双向的潜在信息。针对以上问题,提出了一种融合层次类型信息的双向图注意力机制的知识图谱嵌入模型Bi-HTGAT,该模型设计了层次类型注意力机制,考虑不同关系下每种类型的不同实体对中心实体的贡献。同时引入了关系的方向注意力机制,通过融合不同方向的邻居信息来更新实体和关系嵌入,最终聚合两部分信息以得到实体的最终嵌入。在基准数据集上的实验证明,Bi-HTGAT在链接预测任务上性能明显优于其他基线模型,充分证明了Bi-HTGAT能够进一步提高嵌入结果的精准度。  相似文献   

13.
Knowledge graphs (KGs) have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services. In recent years, researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids. With multiple power grid dispatching knowledge graphs (PDKGs) constructed by different agencies, the knowledge fusion of different PDKGs is useful for providing more accurate decision supports. To achieve this, entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step. Existing entity alignment methods cannot integrate useful structural, attribute, and relational information while calculating entities’ similarities and are prone to making many-to-one alignments, thus can hardly achieve the best performance. To address these issues, this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments. This model proposes a novel knowledge graph attention network (KGAT) to learn the embeddings of entities and relations explicitly and calculates entities’ similarities by adaptively incorporating the structural, attribute, and relational similarities. Then, we formulate the counterpart assignment task as an integer programming (IP) problem to obtain one-to-one alignments. We not only conduct experiments on a pair of PDKGs but also evaluate our model on three commonly used cross-lingual KGs. Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.   相似文献   

14.
Zhou X.  Ma Y.  Cheng G.  Wang H. 《智能系统学报》2012,(收录汇总):1156-1164
With the rise of new combat styles, such as information and algorithmic warfare, target entity recognition in battlefield data analysis plays an important role in decision making. Battlefield situation data are typical battlefield data containing many dynamic entities with close interactions. However, such data often contain strong noise due to hostile interference or concealment; hence, they require higher robustness than general time-series data. This paper proposes a new method based on graph neural networks to represent and process the unstructured data and mine the category information of hostile combat entities. First, the dynamic time warping algorithm was used to establish a new graph structure between combat entities based on their trajectory. Then, a robust graph neural network method was proposed and applied for the type identification of combat entities beyond the radar identification range according to the node attribute information of combat entities. Test results on the simulation data set obtained from the military simulation platform reveal that the proposed method maximizes the temporal characteristics of the entity data and associated attribute information of each node. Compared with the graph neural network and multilayer perceptron methods that rely on singletime relation, the proposed method has advantages in identification accuracy and robustness, expanding the radius of operational entity identification to a certain extent. © 2023, Editorial Department of CAAI Transactions on Intelligent Systems. All rights reserved.  相似文献   

15.
现有时序知识图谱推理主要是基于静态知识图谱的推理方法,通过知识图谱的结构特征挖掘潜在的语义信息和关系特征,忽略了实体时序信息的重要性,因此提出一种基于实体活跃度及复制生成机制的时序知识图谱推理方法(EACG)。首先,通过改进的图卷积神经网络对多关系实体建模,有效挖掘知识图谱的潜在语义信息和结构特征。其次,时序编码器基于实体活跃度学习实体的时序特征。最后,使用复制生成机制进一步学习知识图谱的历史信息,提升对时序数据建模的能力。在时序知识图谱数据集ICEWS14、ICEWS05-15、GDELT上推理的实验结果表明,EACG在MRR评估指标中分别优于次优方法2%、10%和5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号