首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.  相似文献   

2.
3.
4.
Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1β and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1β, IL-18 and transforming growth factor (TGF)-β1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-β1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1β and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.  相似文献   

5.
Dental calculus (DC) is a common deposit in periodontitis patients. We have previously shown that DC contains both microbial components and calcium phosphate crystals that induce an osteoclastogenic cytokine IL-1β via the NLRP3 inflammasome in macrophages. In this study, we examined the effects of cytokines produced by mouse macrophages stimulated with DC on osteoclastogenesis. The culture supernatants from wild-type (WT) mouse macrophages stimulated with DC accelerated osteoclastogenesis in RANKL-primed mouse bone marrow macrophages (BMMs), but inhibited osteoclastogenesis in RANKL-primed RAW-D cells. WT, but not NLRP3-deficient, mouse macrophages stimulated with DC produced IL-1β and IL-18 in a dose-dependent manner, indicating the NLRP3 inflammasome-dependent production of IL-1β and IL-18. Both WT and NLRP3-deficient mouse macrophages stimulated with DC produced IL-10, indicating the NLRP3 inflammasome-independent production of IL-10. Recombinant IL-1β accelerated osteoclastogenesis in both RANKL-primed BMMs and RAW-D cells, whereas recombinant IL-18 and IL-10 inhibited osteoclastogenesis. These results indicate that DC induces osteoclastogenic IL-1β in an NLRP3 inflammasome-dependent manner and anti-osteogenic IL-18 and IL-10 dependently and independently of the NLRP3 inflammasome, respectively. DC may promote alveolar bone resorption via IL-1β induction in periodontitis patients, but suppress resorption via IL-18 and IL-10 induction in some circumstances.  相似文献   

6.
(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.  相似文献   

7.
Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1β (IL-1β), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1β is significantly elevated by astrocytic expression. Maturation of IL-1β to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1β expression in spinal astrocytes. The release of mature IL-1β can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.  相似文献   

8.
The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1β (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission.  相似文献   

9.
10.
3K3A-Activated Protein C (APC) is a recombinant variant of the physiological anticoagulant APC with pleiotropic cytoprotective properties albeit without the bleeding risks. The anti-inflammatory activities of 3K3A-APC were demonstrated in multiple preclinical injury models, including various neurological disorders. We determined the ability of 3K3A-APC to inhibit ocular inflammation in a murine model of lipopolysaccharide (LPS)-induced uveitis. Leukocyte recruitment, microglia activation, NLRP3 inflammasome and IL-1β levels were assessed using flow cytometry, retinal cryosection histology, retinal flatmount immunohistochemistry and vascular imaging, with and without 3K3A-APC treatment. LPS triggered robust inflammatory cell recruitment in the posterior chamber. The 3K3A-APC treatment significantly decreased leukocyte numbers and inhibited leukocyte extravasation from blood vessels into the retinal parenchyma to a level similar to controls. Resident microglia, which underwent an inflammatory transition following LPS injection, remained quiescent in eyes treated with 3K3A-APC. An inflammation-associated increase in retinal thickness, observed in LPS-injected eyes, was diminished by 3K3A-APC treatment, suggesting its clinical relevancy. Finally, 3K3A-APC treatment inhibited inflammasome activation, determined by lower levels of NLRP3 and its downstream effector IL-1β. Our results highlight the anti-inflammatory properties of 3K3A-APC in ocular inflammation and suggest its potential use as a novel treatment for retinal diseases associated with inflammation.  相似文献   

11.
Sarcopenia is defined as the age-related loss of skeletal muscle mass, quality, and strength. The pathophysiological mechanisms underlying sarcopenia are still not completely understood. The aim of this work was to evaluate, for the first time, the expression of NLRP3 inflammasome in bovine skeletal muscle in order to investigate the hypothesis that inflammasome activation may trigger and sustain a pro-inflammatory environment leading to sarcopenia. Samples of skeletal muscle were collected from 60 cattle belonging to three age-based groups. Morphologic, immunohistochemical and molecular analysis were performed to assess the presence of age-related pathologic changes and chronic inflammation, the expression of NLRP3 inflammasome and to determine the levels of interleukin-1β, interleukin-18 and tumor necrosis factor alpha in muscle tissue. Our results revealed the presence of morphologic sarcopenia hallmark, chronic lymphocytic inflammation and a type II fibers-selective NLRP3 expression associated to a significant decreased number of immunolabeled-fibers in aged animals. Moreover, we found a statistically significant age-related increase of pro-inflammatory cytokines such as interleukin-1β and interleukin-18 suggesting the activation of NLRP3 inflammasome. Taken together, our data suggest that NLRP3 inflammasome components may be normally expressed in skeletal muscle, but its priming and activation during aging may contribute to enhance a pro-inflammatory environment altering normal muscular anabolism and metabolism.  相似文献   

12.
Low-grade chronic inflammation plays a pivotal role in the pathogenesis of insulin resistance (IR), and skeletal muscle has a central role in this condition. NLRP3 inflammasome activation pathways promote low-grade chronic inflammation in several tissues. However, a direct link between IR and NLRP3 inflammasome activation in skeletal muscle has not been reported. Here, we evaluated the NLRP3 inflammasome components and their role in GLUT4 translocation impairment in skeletal muscle during IR. Male C57BL/6J mice were fed with a normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. The protein levels of NLRP3, ASC, caspase-1, gasdermin-D (GSDMD), and interleukin (IL)-1β were measured in both homogenized and isolated fibers from the flexor digitorum brevis (FDB) or soleus muscle. GLUT4 translocation was determined through GLUT4myc-eGFP electroporation of the FBD muscle. Our results, obtained using immunofluorescence, showed that adult skeletal muscle expresses the inflammasome components. In the FDB and soleus muscles, homogenates from HFD-fed mice, we found increased protein levels of NLRP3 and ASC, higher activation of caspase-1, and elevated IL-1β in its mature form, compared to NCD-fed mice. Moreover, GSDMD, a protein that mediates IL-1β secretion, was found to be increased in HFD-fed-mice muscles. Interestingly, MCC950, a specific pharmacological NLRP3 inflammasome inhibitor, promoted GLUT4 translocation in fibers isolated from the FDB muscle of NCD- and HFD-fed mice. In conclusion, we found increased NLRP3 inflammasome components in adult skeletal muscle of obese insulin-resistant animals, which might contribute to the low-grade chronic metabolic inflammation of skeletal muscle and IR development.  相似文献   

13.
The NLR pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role in lung disease and may have a similar role in upper respiratory tract inflammation. We therefore constructed a C57BL/6 mouse model of acute rhinosinusitis induced by Staphylococcus aureus and investigated the role of the NLRP3 inflammasome in this model. Mice were classified as non-inoculated group (group A) and inoculated groups (groups B, C, D and E, sacrificed 1, 3, 7 and 14 days after inoculation, respectively). Hematoxylin-eosin staining showed that each group had inflammatory cell infiltration, except group A. The damage of the nasal mucosa was aggravated gradually over time. Western blot and immunofluorescence showed that the structural proteins of the NLRP3 inflammasome (NLRP3, ASC (apoptosis-associated speck-like protein containing CARD), procaspase-1) in groups B, C, D and E were increased gradually. But they were reduced in group B compared with group A, except for NLRP3. Western blot showed that the cleavage fragment of procaspase-1, p20 in groups B, C, D and E was increased gradually. Real-time PCR showed that the corresponding mRNAs of the structural proteins were changed the same as their proteins. IL-1β mRNA and mature IL-1β protein were increased gradually in groups A, B, C, D and E. These results indicate that NLRP3 inflammasome activation was associated with the acute rhinosinusitis, and that there was a positive correlation between the expression level of the NLRP3 inflammasome and the severity of acute rhinosinusitis.  相似文献   

14.
15.
We aimed to investigate the effect of acute glucose shift on the activation of the NLRP3 inflammasome, IL-1β secretion, and underlying signaling pathways in THP-1 cells. THP-1 cells were divided into four groups and exposed to the following glucose concentrations for 24 h: constant normal glucose (NG, 5.5 mM), constant high glucose (HG, 25 mM), normal to high glucose shift (NG-to-HG, 5.5 to 25 mM), and high to normal glucose shift (HG-to-NG, 25 to 5.5 mM). Cell viability, oxidative stress, and the levels of NLRP3 inflammasome components were assessed. Both directions of the acute glucose shift increased the activation of the NLRP3 inflammasome, generation of reactive oxygen species (ROS), and expression of phosphorylated p38 MAPK, JNK, and NF-κB compared with either constant NG or HG. Treatment with N-acetylcysteine, a pharmacological antioxidant, inhibited the acute glucose shift-induced generation of ROS, activation of NLRP3 inflammasome, and upregulation of MAPK-NF-κB. Further analysis using inhibitors of p38 MAPK, JNK, and NF-κB indicated that acute glucose shifts promoted IL-1β secretion by activating the signaling pathway in a ROS-MAPK-NF-κB-NLRP3 inflammasome in THP-1 cells. These findings suggested that acute changes in glucose concentration might cause monocyte inflammation, which is associated with diabetic complications.  相似文献   

16.
Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA1 following ischemic challenge with transient middle cerebral artery occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule 1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1β (IL-1β) maturation, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1β maturation, and IL-1β secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively, results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by activating NLRP3 inflammasome with underlying effector mechanisms.  相似文献   

17.
Microglia are resident immune cells in the central nervous system. They play a role in normal brain development and neuronal recovery. However, overactivation of microglia causes neuronal death, which is associated with neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Therefore, controlling microglial activation has been suggested as an important target for treatment of neurodegenerative diseases. In the present study, we investigated the anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia. The data showed that Rg5 suppressed LPS-induced nitric oxide (NO) production and proinflammatory TNF-α secretion. In addition, Rg5 inhibited the mRNA expressions of iNOS, TNF-α, IL-1β, COX-2 and MMP-9 induced by LPS. Further mechanistic studies revealed that Rg5 inhibited the phophorylations of PI3K/Akt and MAPKs and the DNA binding activities of NF-κB and AP-1, which are upstream molecules controlling inflammatory reactions. Moreover, Rg5 suppressed ROS production with upregulation of hemeoxygenase-1 (HO-1) expression in LPS-stimulated BV2 cells. Overall, microglial inactivation by ginsenoside Rg5 may provide a therapeutic potential for various neuroinflammatory disorders.  相似文献   

18.
NLRP3 is an important pattern recognition receptor in the innate immune system, and its activation induces a large number of pro-inflammatory cytokines, IL-1β and IL-18 which are involved in the development of various diseases. In recent years, it has been suggested that mitochondria are the platform for NLRP3 inflammasome activation. Additionally, exercise is considered as an important intervention strategy to mediate the innate immune responses. Generally, chronic moderate-intensity endurance training, resistance training and high-intensity interval training inhibit NLRP3 inflammasome activation in response to various pathological factors. In contrast, acute exercise activates NLRP3 inflammasome. However, the mechanisms by which exercise regulates NLRP3 inflammasome activation are largely unclear. Therefore, the mechanism of NLRP3 inflammasome activation is discussed mainly from the perspective of mitochondria in this review. Moreover, the effect and potential mechanism of exercise on NLRP3 inflammasome are explored, hoping to provide new target for relevant research.  相似文献   

19.
In inflammatory bone diseases such as periodontitis, the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome accelerates bone resorption by promoting proinflammatory cytokine IL-1β production. However, the role of the NLRP3 inflammasome in physiological bone remodeling remains unclear. Here, we investigated its role in osteoclastogenesis in the presence and absence of lipopolysaccharide (LPS), a Gram-negative bacterial component. When bone marrow macrophages (BMMs) were treated with receptor activator of nuclear factor-κB ligand (RANKL) in the presence of NLRP3 inflammasome inhibitors, osteoclast formation was promoted in the absence of LPS but attenuated in its presence. BMMs treated with RANKL and LPS produced IL-1β, and IL-1 receptor antagonist inhibited osteoclastogenesis, indicating IL-1β involvement. BMMs treated with RANKL alone produced no IL-1β but increased reactive oxygen species (ROS) production. A ROS inhibitor suppressed apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) speck formation and NLRP3 inflammasome inhibitors abrogated cytotoxicity in BMMs treated with RANKL, indicating that RANKL induces pyroptotic cell death in BMMs by activating the NLRP3 inflammasome via ROS. This suggests that the NLRP3 inflammasome promotes osteoclastogenesis via IL-1β production under infectious conditions, but suppresses osteoclastogenesis by inducing pyroptosis in osteoclast precursors under physiological conditions.  相似文献   

20.
Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号