首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究刘桥一矿663工作面底板破坏深度,采用了理论计算和钻孔压水试验法.理论公式计算获得工作面底板破坏深度为16.27m,最大破坏深度距工作面端部的水平距离为10.57m,采空区内底板破坏区沿水平方向的最大长度为86.54m;通过钻孔压水试验的三个钻孔测试获得底板破坏深度在16m左右,结合经验公式计算最终确定底板破坏深度为18.88m.该研究成果为其他的工作面底板破坏深度提供了重要的参数依据.  相似文献   

2.
煤层底板承压水对工作面安全回采影响很大,为研究带压开采工作面长度对底板破坏深度的影响,以某矿生产条件为例,基于弹性力学半平面体理论,建立支承压力与承压水压力耦合作用下底板应力分布模型,计算得到底板应力分布状态解析解,利用Mathematica软件进行数据处理,并将应力分布图像化。取得以下研究结果:带压开采底板破坏深度与工作面长度正相关,最大破坏深度出现在工作面倾向中部;该矿底板允许最大破坏深度为13m,工作面长度应不大于110m。该模型为带压开采合理工作面长度的确定提供了参考依据。  相似文献   

3.
为得到离柳矿区柳家庄煤矿8号煤层首采工作面底板破坏发育特征,采用数值模拟及现场实测相结合的方法,研究了80101首采工作面底板破坏裂隙的发育形态及深度、不同工作面宽度条件下的底板破坏深度发育特征;根据压水判别依据,确定了5组底板破坏探测孔裂隙发育深度的实测数据。数值模拟结果表明:未受相邻采场采动应力影响下的首采工作面底板破坏深度发育较小,底板破坏在工作面走向上呈倒马鞍形,即工作面端部两侧底板破坏深度最大,最大破坏带向外侧倾斜为剪切破坏为主;工作面中部底板破坏深度小,以拉张破坏为主;底板破坏深度受工作面宽度影响较大,底板采动破坏深度与工作面宽度呈线性变化。现场实测结果表明,柳家庄煤矿80101首采工作面底板破坏深度为16.32~16.92 m,验证了数值模拟的有效性,同时为离柳矿区下组煤带压开采提供了基础资料。  相似文献   

4.
陈龙  王国举 《煤炭与化工》2023,(4):87-89+102
针对东庞矿北井9222孤岛工作面面临底板奥灰水及隐伏构造的威胁的问题,采用KJ1073煤矿微震监测系统对工作底板进行了实时、动态的监测。根据微震监测结果,对微震事件发育深度、分布不均衡性、与采线相对位置关系进行了分析。结果表明,在回采过程中,工作面底板最大破坏深度20~25 m;工作面两侧围岩破坏范围分别为42 m、55 m,背向工作面回采有助于孤岛工作面的安全生产;当工作面推进距离达到60 m时,底板破坏深度增加。研究结果为工作面底板注浆层位和外扩距离的确定提供了依据。  相似文献   

5.
为了研究14311综采工作面开采后的底板破坏带深度,采用力学模型公式,经验公式和数值模拟三种方法对综采工作面回采后造成的底板破坏带深度进行研究。应用规程中的公式计算得到底板破坏深度分别为8.7 m、8.3m、24.44 m、22.67 m和21.72 m,最大为24.44m。数值模拟得到的底板破裂深度分别为12 m和15 m。综合理论计算和数值模拟结果,得出最大可能的底板破坏深度为24.44 m。  相似文献   

6.
为确定团柏煤矿11#煤层工作面长度对底板的破坏深度,利用F-RFPA2D模拟软件,并结合11#煤层工况条件,建立了模拟模型,设计了工作面长度分别为60,80,100,120,140,160 m 6个模拟方案进行数值分析。结果表明:当工作面长度小于140 m时,底板岩层破坏深度受到影响;当工作长度为60~100 m时,工作面长度每增加20 m,底板岩层破坏深度增加约2 m;当工作面长度达到140 m时,底板岩层破坏深度基本不受影响,直接破坏深度基本保持在13 m左右;此后,底板岩层破坏深度不再随着工作面开采长度的增加而扩大。  相似文献   

7.
《煤炭技术》2017,(10):43-45
针对寺河矿3~#煤层带压开采问题,选取W2302综采工作面为工程背景,进行底板破坏深度研究。采用现场压水试验方法,对该工作面底板破坏规律进行采前、采后全过程实测,利用FLAC~(3D)数值模拟软件,对底板破坏深度和型态进行了数值仿真。研究结果表明:现场实测该工作面采后底板最大破坏深度为17.8 m;数值模拟底板破坏最大破坏深度为20 m,二者结果基本相吻合。  相似文献   

8.
工作面开采过程中底板破坏带是导水导气的重要通道,对底板水防治和瓦斯抽采具有直接影响。为研究某矿01658工作面开采后底板破坏带的深度,采用断裂力学计算公式、塑性力学计算公式和经验公式对工作面采后底板的破坏带深度进行了分析。采用断裂力学计算得到01658工作面最大破坏深度为25.73 m;采用塑性力学计算得到的最大破坏深度为17.0 m;采用经验公式计算得出底板破裂带的最大深度为26.60 m。为保证安全生产,选择底板破坏带深度应为26.60 m。  相似文献   

9.
为了探究煤矿底板采动破坏规律,以内蒙古不连沟煤矿F6106工作面为试验现场,分别从现场注水试验、底板岩层应变探测、理论预测计算三个方面对煤层底板采动破坏规律进行分析,现场底板探测得出底板岩层在工作面推到测点时出现第一次破坏,破坏深度约为18.5m,当工作面推过测点15~20m后,采空区底板岩层破坏深度出现二次加深现象,破坏深度加深1m,采后底板破坏最大深度为19.5m;Griffith破坏准则下的底板弹性理论预测结果得出底板最大破坏深度与煤层埋深H、工作面应力集中系数n、底板岩体的单轴抗拉强度Rt有关,底板最大破坏深度随着埋深、支承压力增大而增大,随底板岩体的单轴抗拉强度的增大而减小。工程实践表明,F6106工作面底板破坏深度现场探测结果与理论预测结果一致。  相似文献   

10.
以某矿41503工作面为研究背景,先后采用理论预计、双端封堵侧漏现场实测、FLAC~(3D)数值模拟等方法,对该工作面采动后底板岩体破坏深度进行研究。研究结果表明:(1)41503工作面采后底板破坏深度理论预计结果为16.89~20.40m,现场实测结果为12.26m,数值模拟结果为13.67m;(2)通过对比发现,现场实测结果与数值模拟结果基本接近,而经验公式预计的结果偏于保守,综合确定该工作面底板最大破坏深度为12.26m,为承压水上安全开采提供依据;(3)数值模拟显示,随着工作面推进,底板塑性区不断增大,当工作面推进至90 m时,底板采动破坏深度达最大值13.67m,此后最大破坏深度不再增加,其破坏顶界沿走向呈一条与底板近似平行的直线,沿倾向大致呈"倒马鞍形",且塑性区变化与最大主应力变化趋势一致。  相似文献   

11.
廖志恒 《煤矿安全》2018,(4):185-188
为研究承压水上膏体充填开采底板采动破坏特征,以岱庄煤矿11607工作面的采场条件为工程背景,基于FLAC~(3D)数值仿真软件,建立承压水上膏体充填开采流-固耦合数值模型,对充填工作面回采过程中煤层底板的破坏特征进行了研究分析。研究表明:充填开采采动底板的承压水导升高度不明显,煤层底板破坏深度在工作面推进至12.4 m后趋于平缓,且当工作面推进至100 m时达到底板最大破坏深度仅为6 m,理论计算了充填工作面采动底板的最大破坏深度范围为3.83~5.27 m,采用单孔恒定水压法对11607工作面底板进行现场实测,测得底板最大破坏深度为6.50 m,与理论计算、数值模拟所得结果基本吻合。  相似文献   

12.
平煤矿区首次开采近全岩下保护层工作面用于解放其上部受瓦斯突出威胁的己组煤炭资源,近千米埋深开采近全岩层势必加大底板破坏深度,一旦扰动隔水层内L5弱富水性含水层形成寒灰水间接补给通道,影响工作面底板安全稳定。为此首先建立双层结构底板塑性滑移线场理论模型,推导出三种工况下双层底板最大破坏深度解析解;然后通过自主设计的孔隙水压力(弹簧)和地层有效应力(千斤顶)协同工作的相似模拟试验平台,基于数字图像相关技术模拟分析了采场顶底板变形形态和破坏特征;最后使用钻孔应变测量方法在平煤十二矿己15-31040近全岩工作面开展底板破裂发育形态现场监测。结果表明:采用双层结构底板塑性滑移线场理论计算出己15-31040近全岩工作面底板最大破坏深度为16.59 m;相似模拟试验揭示了底板破坏集中于开切眼及工作面两端,具有明显滞后破坏特征,最大破坏深度为17.8 m,工作面推进159.9 m进入充分开采后,底板应力逐渐恢复;现场实测结果显示底板岩体在工作面前方7.9 m出现压剪滑移破坏,工作面推过钻孔前后底板分别表现出压剪和拉剪破坏,底板最大破坏深度介于16.5~18 m。现场实测与理论计算和相似模拟试验结果...  相似文献   

13.
基于断裂力学理论,将倾斜长壁工作面看作倾斜裂纹,采用断裂力学Ⅰ-Ⅱ复合型裂纹模型,计算出倾斜煤层工作面端部的底板应力分布,结合Mohr-Coulomb屈服准则,推导出平面应力状态下工作面上、下端部底板破坏深度以及破坏深度距端部的水平距离计算公式。理论分析表明,随着煤层埋深和工作面长度的增加,端部底板破坏深度呈线性增加;随着底板岩层平均抗压强度的增加,端部底板破坏深度呈反比例减小;随着煤层倾角的增大,端部底板破坏深度先增加、后减小,当拐点倾角为α时,底板破坏深度最大。用所推导的公式分析桃园矿1066工作面上、下端部最大破坏深度分别为15.77m和17.40m,现场微震监测工作面上、下端部最大破坏深度分别为12m和16m。结果表明,推导出的计算公式具有一定的适用性,可为带压开采提供参考。  相似文献   

14.
为研究厚煤层综放开采工作面底板破坏特征,运用滑移线场理论,构建了靠近工作面超前支承压力影响的底板破坏深度计算模型,采用数值模拟分析了不同推进度下的覆岩破坏特征,采用瞬变电磁法,开展煤层底板破坏深度探测工作。研究结果表明,在考虑超前支承压力影响下工作面煤层底板最大破坏深度为28.15 m,在工作面达到充分采动时,上覆岩层破坏形态呈现出马鞍形,而煤层底板破坏呈现出勺形,采用瞬变电磁法获取的煤层底板破坏深度为35 m,且工作面回采后未出现异常突水现象,研究结果确保了工作面的安全回采。  相似文献   

15.
针对朝川矿开采二1煤21090工作面,利用超声波技术对工作面底板采动破坏情况进行探查和分析,依据距离工作面不同距离波速随深度的变化,确定底板采动破坏深度。探查结果表明,该工作面底板采动破坏深度集中在20.40~23.36 m,且深部岩层裂隙优先于浅部岩层发育。  相似文献   

16.
杨平  张超 《煤矿安全》2012,43(1):164-166
针对埠村煤矿911采区首采条带工作面初采阶段发生底板突水的问题,采用数值模拟与现场实测等方法,就工作面宽度对底板破坏深度的影响进行了研究。结果表明:条带采宽为15~20 m时,对应的底板破坏深度均为5~7 m;多个工作面叠加影响后底板破坏最大深度为10m。将采区条带工作面宽度由15 m增至20 m,提高了资源回收率,在保证安全回采的前提下取得了显著的经济效益。  相似文献   

17.
极近距离煤层采空区下工作面两巷合理位置确定   总被引:10,自引:0,他引:10  
为合理布置霍洛湾煤矿极近距离煤层下分层工作面两巷位置,采用弹塑性力学理论计算了上分层工作面开采底板最大屈服深度,得出了底板破坏深度为8.29m,应用FLAC叫数值模拟软件分析了上分层工作面开采对底板的影响,通过对邻近工作面开采过程及巷道掘进的模拟,得出了底板损伤过程及其内部应力变化,确定出下分层22104工作面两巷距上分层22102工作面回风巷水平距离分别为85和300m,并进行了巷道变形实测,在观测区域未出现较为明显的巷道变形破坏。结果表明,利用底板破坏深度及采空区下低应力区等结论确定下分层工作面两巷的合理布置方式是可行的.  相似文献   

18.
为了预防工作面底板突水,保证矿井的安全生产,以梁北煤矿11141工作面为工程背景,采用数值模拟研究了带压开采工作面推进距离、埋深、煤层厚度、断层及断层位置等不同条件对底板破坏深度的影响。研究结果表明,工作面推进距离越大底板破坏深度越大,但推进至60m后,底板破坏深度保持不变趋于稳定;埋深越大底板破坏深度越大,400m埋深增加到800m埋深,每增加200m埋深,增大速度由50%降至12.25%,增大速度逐渐减小;煤层厚度越大,底板的破坏范围越大,对底板的破坏深度无影响;存在断层则底板破坏深度越大,底板最大破坏深度增加18.2%,断层位于初次来压影响范围内比位于周期来压影响范围内对底板破坏深度的影响要剧烈。  相似文献   

19.
以开滦矿区东欢坨矿8~#孤岛煤柱回采为工程背景,针对孤岛工作面底板垂直应力分布情况和底板破坏深度进行研究。建立了孤岛煤柱在倾向方向上的底板受力模型,采用半无限体空间理论,推导出了底板应力计算公式,基于底板垂直应力理论分析结果和理论计算,得出东欢坨矿底板最大破坏深度14.8m。并利用数值模拟软件FLAC3D计算出该矿底板最大破坏深度15.2m。通过采用微震技术监测8~#孤岛工作面,得出底板最大破坏深度为15.4m,三种方法得出的结果基本吻合。从理论上验证了该孤岛工作面开采对其下方-480水平大巷的稳定性没有影响。  相似文献   

20.
为研究特厚煤层采动底板破坏深度,以大同矿区某矿综放工作面采场条件为工程背景,通过FLAC3D数值模拟软件,建立特厚煤层开采的数值模型。通过模拟发现工作面底板破坏深度最大为16 m.为进一步研究底板破坏深度,结合了理论计算的方法,并在原有公式的基础上修正了公式。结合两种方法,得到底板最大破坏深度基本处于16~20.6 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号