首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
为研究动力电池组的温度特性以及维持其工作在最佳的温度范围内,以锂离子电池为研究对象,设计了一种新型混合动力汽车的电池热管理系统,利用空调系统和发动机排气系统来调控电池组的温度。建立了锂电池组的三维瞬态产热数值模型,以电池组的三维尺寸和进风口流速为输入参数,以降低电池组的最大温升和提高电池组的温度均匀性为输出参数,利用FLUENT仿真软件和DesignXplorer模块进行联合优化设计了电池组的结构。优化后的电池组的温升比优化前降低了5.39 K,电池组温差降低了6.41 K。分析了恒倍率放电以及对流换热系数对单体电池温升的影响,研究表明:放电倍率越大电池温升越快,放电结束后电池的温度越高,在对流换热系数小于30 W/(m2·K)时,散热效果明显。对电池组在不同条件下加热或者冷却进行了仿真分析,验证了该电池热管理系统的可行性。  相似文献   

2.
Investigation on the thermal behavior of the lithium-ion battery which includes the temperature response, heat contribution and generation, is of vital importance for their performance and safety. In this study, an electrochemical-thermal cycling model is presented for a 4 Ah 21700 type cylindrical single cell and 3× 3 battery pack and the model is validated by experiment on a single cell. Thermal behavior on a single cell is first analyzed, the results show that the heat generated in the charge is smaller than the discharge, and the polarization heat contributes the most to total heat, especially under higher rate. It can also be concluded from the battery pack that the temperature of the cell inside the battery pack is significantly greater than the external battery, while the temperature difference exists the opposite regular due to the worst heat dissipation of the central cell. Finally, after taking the enhanced liquid cooling strategy, the maximum temperature is 320.6 K that is reduced by 9.38%, and the maximum temperature difference is 4.9 K which is reduced by 69.6% at 2C, meeting the requirements of battery thermal management system.  相似文献   

3.
High‐power applications of lithium‐ion batteries require efficient thermal management systems. In this work, a lumped capacitance heat transfer model is developed in conjunction with a flow network approach to study performance of a commercial‐size lithium‐ion battery pack, under various design and operating conditions of a thermal management system. In order to assess the battery thermal management system, capabilities of air, silicone oil, and water are examined as three potential coolant fluids. Different flow configurations are considered, and temperature dispersions, cell‐averaged voltage distributions, and parasitic losses due to the fan/pump power demand are calculated. It is found that application of a coolant with an appropriate viscosity and heat capacity, such as water, in conjunction with a flow configuration with more than one inlet will result in uniform temperature and voltage distributions in the battery pack while keeping the power requirement at low, acceptable levels. Simulation results are presented and compared with literature for model validation and to show the superior capability of the proposed battery pack design methodology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
采用实验测试与数值仿真的方法对NCR18650A三元锂电池组在1 ~ 3 C放电和1.6 C充电过程的温升特性进行测试,同时验证所建立电池产热模型的准确性。结果显示,实验测试结果与电池产热模型仿真结果之间的相对误差在合理范围内,满足工程应用需求。电池组在自然冷却的情况下,仅在1 C放电状态下符合其最佳工作区间42.5 ~ 45.0℃的要求,3 C放电倍率下最高温度为89.4℃。提出并建立基于热电致冷主动热管理模型,将热电致冷组件设置在电池组上方,致冷功率为50 W时可有效控制电池组3 C放电过程的温度,在最佳工作区间实现电池单体温差小于5℃,抑制电池组的热失效并实现良好的均温性。  相似文献   

5.
Li‐ion cells are used for energy storage and conversion in electric vehicles and a variety of consumer devices such as hoverboards. Performance and safety of such devices are severely affected by overheating of Li‐ion cells in aggressive operating conditions. Multiple recent fires and accidents in hoverboards are known to have originated in the battery pack of the hoverboard. While thermal analysis and measurements have been carried out extensively on large battery packs for electric vehicles, there is relatively lesser research on smaller devices such as hoverboards, where the extremely limited thermal management design space and the critical importance of user safety result in severe thermal management challenges. This paper presents experimental measurements and numerical analysis of a novel approach for thermal management of the battery pack of a hoverboard. Measurements indicate that temperature rise in cells in the pack can be as large as 30°C at 4C discharge rate, which, although unlikely to be a standard discharge rate, may result from a malfunction or accident. A novel thermal management approach is investigated, wherein careful utilization of air flow generated by hoverboard motion is shown to result in significant temperature reduction. Measurements also indicate the key role of the metal housing around the battery pack in thermal management. Measurements are found to be in good agreement with finite element simulations, which indicate that the battery pack can be cooled as effectively in presence of a perforated metal casing as without the casing at all. Experimental data and simulation model presented here offer critical insights into the design of hoverboard thermal management and may result in safer, high performance hoverboard battery packs.  相似文献   

6.
A thermal management system with the capability of achieving excellent heat dissipation is essential to the development of battery pack for transportation devices. To meet the temperature uniformity requirements of the battery pack, the plate flat heat pipe and liquid‐cooled coupled multistage heat dissipation system had been introduced. In this article, the research status of thermal management systems in battery pack was introduced. And the heat generation and heating power of the Li‐ion cell were studied. Then, the structure model of plate flat heat pipe system was proposed. Finally, the enhanced heat conduction effect of the thermal management system proposed in this article was comprehensively analyzed. Through the analysis of the results, in high discharge rates, the thermal management system proposed in this article could meet the temperature uniformity requirements of battery pack; also, the internal difference would reduce by 30.20%.  相似文献   

7.
Thermal issues associated with electric vehicle battery packs can significantly affect performance and life cycle. Fundamental heat transfer principles and performance characteristics of commercial lithium‐ion battery are used to predict the temperature distributions in a typical battery pack under a range of discharge conditions. Various cooling strategies are implemented to examine the relationship between battery thermal behavior and design parameters. By studying the effect of cooling conditions and pack configuration on battery temperature, information is obtained as to how to maintain operating temperature by designing proper battery configuration and choosing proper cooling systems. It was found that a cooling strategy based on distributed forced convection is an efficient, cost‐effective method which can provide uniform temperature and voltage distributions within the battery pack at various discharge rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
With the depletion of fossil fuels and the aggravation of environmental pollution, the research and development speed of electric vehicles has been accelerating, and the thermal management of battery pack has become increasingly important. This paper selects the electric vehicle battery pack with natural air cooling as the study subject, conducts simulation analysis of the heat dissipation performance of battery packs with and without vents. Then this paper researches on the influence of internal flow field and external flow field. Field synergy principle is used to analyze the effect of velocity field and temperature field amplitude. The results show the following: it is found that the maximum temperature rise and the internal maximum temperature difference of the battery pack with vents are reduced by about 23.1% and 19.9%, raising speed value can improve the heat dissipation performance, and raising temperature value can decrease the heat dissipation performance. Reasonable design of the vents can make the inner and outer flow field work synergistically to achieve the best cooling effect. Then the reference basis for the air cooling heat dissipation performance analysis of electric vehicle, battery pack structure arrangement, and air‐inlet and air‐outlet pattern choosing are offered.  相似文献   

9.
A battery pack is the main energy storage element, and directly affects the performance of an electric vehicle. Battery thermal management system research and its development for a modern electric vehicle is required. This paper selects the forced air cooling of battery pack as the research object, and uses simulation methods to research the heat dissipation performance with different structures of battery packs. The results indicate that according to the four types of transient state conditions, the rising temperature of both battery packs are significantly higher than the temperature difference, the maximum temperature rise and temperature difference of a horizontal battery pack are lower than a longitudinal battery pack. When an electric vehicle begins to decrease speed, the curves of temperature rising and temperature difference increase. This shows the internal heat is continuously rising, so even in a electric vehicle beginning to decrease speed, the fan must work. The reference basis for choosing battery pack type and an analysis of heat flow field characteristics, including fan run‐time control, are offered.  相似文献   

10.
为动力锂电池组设计了通风冷却系统,在控制总通风量的前提下,研究了非稳态射流对动力锂电池组的冷却效果,针对26650型锂电池组射流冲击方案进行数值模拟分析,揭示非稳态射流送风周期、送风变化量对电池组温升和温度均匀性的影响。研究结果表明:冲击射流的非稳态特性改善了电池组温度场的均匀性,对电池组总温升影响不明显。  相似文献   

11.
The heat generation model and three-dimensional computational fluid dynamics model for lithium ion cells were established with boundary conditions defined.In order to provide a better insight about the behaviors of high-power lithium ion cells under realistic discharge conditions,the temperature difference of the cells and an active thermal management system with a pure air-cooling mode were analyzed and predicted with the factors affecting the unevenness of temperature field discussed.The results show a significant effect of the cooling flow rate on the temperature rise of the cells for all discharge rates.Average surface temperatures are relatively uniform at lower discharge rate that makes it easier to control the temperature of the pack.Cell temperatures are expected to rise significantly toward the end of discharge and they show non-uniformity at higher discharge rates.Adequate air flow rate of active cooling is required at high discharge rate and high ambient temperature for practical pack thermal management system.  相似文献   

12.
Power lithium‐ion batteries have been widely utilized in energy storage system and electric vehicles, because these batteries are characterized by high energy density and power density, long cycle life, and low self‐discharge rate. However, battery charging always takes a long time, and the high current rate inevitably causes great temperature rises, which is the bottleneck for practical applications. This paper presents a multiobjective charging optimization strategy for power lithium‐ion battery multistage charging. The Pareto front is obtained using multiobjective particle swarm optimization (MOPSO) method, and the optimal solution is selected using technique for order of preference by similarity to ideal solution (TOPSIS) method. This strategy aims to achieve fast charging with a relatively low temperature rise. The MOPSO algorithm searches the potential feasible solutions that satisfy two objectives, and the TOPSIS method determines the optimal solution. The one‐order resistor‐capacitor (RC) equivalent circuit model is utilized to describe the model parameter variation with different current rates and state of charges (SOCs) as well as temperature rises during charging. And battery temperature variations are estimated using thermal model. Then a PSO‐based multiobjective optimization method for power lithium‐ion battery multistage charging is proposed to balance charging speed and temperature rise, and the best charging stage currents are obtained using the TOPSIS method. Finally, the optimal results are experimentally verified with a power lithium‐ion battery, and fast charging is achieved within 1534 s with a 4.1°C temperature rise.  相似文献   

13.
Lithium‐ion battery packs have been generally used as the power source for electric vehicles. Heat generated during discharge and limited space in the battery pack may bring safety issues and negative effect on the battery pack. Battery thermal management system is indispensable since it can effectively moderate the temperature rise by using a simple system, thereby improving the safety of battery packs. However, the comprehensive investigation on the optimal design of battery thermal management system with liquid cooling is still rare. This article develops a comprehensive methodology to design an efficient mini‐channel cooling system, which comprises thermodynamics, fluid dynamics, and structural analysis. The developed methodology mainly contains four steps: the design of the mini‐channel cooling system and computational fluid dynamics analysis, the design of experiments and selection of surrogate models, formulation of optimization model, and multi‐objective optimization for selection of the optimum scheme for mini‐channel cooling battery thermal management system. The findings in the study display that the temperature difference decreases from 8.0878 to 7.6267 K by 5.70%, the standard temperature deviation decreases from 2.1346 to 2.1172 K by 0.82%, and the pressure drop decreases from 302.14 to 167.60 Pa by 44.53%. The developed methodology could be extended for industrial battery pack design process to enhance cooling effect thermal performance and decrease power consumption.  相似文献   

14.
电动车辆的性能和成本很大程度上取决于动力电池组的性能和使用寿命,而电池组的性能和使用寿命又受到电池单体产热的影响。研究锂离子电池充放电过程中的产热特性及影响因素,对锂电池的开发及使用具有指导意义。本文从环境温度、充放电倍率、电池材料、荷电状态和老化程度五个方面入手,综述了各因素对锂离子电池产热的影响。  相似文献   

15.
鉴于汽车启动电源铅酸电池存在严重环境污染隐患,本文采用环保型32650圆柱磷酸铁锂电池组装成25.6 V/65 A•h电池组代替铅酸电池应用于汽车启动电源,并分别对磷酸铁锂电池组的常温和低温启动能力、倍率性能和低温放电性能等进行测试。实验结果表明,电池组0.33 C放电容量为67.028 A•h,3 C放电容量为0.33 C放电容量的98.24%,电池组具有较好的倍率性能;电池组在 −30℃放电容量为额定容量的84.7%,具有良好的低温性能;电池组在25℃和 −20℃下以600 A电流放电,单串电池电压均高于放电保护电压;电池组在25℃搁置28 d之后,容量恢复率为99.37%;磷酸铁锂电池组性能均满足汽车启动电源性能要求,可以代替铅酸电池作为汽车启动电源。  相似文献   

16.
为了研究动力汽车用锂电池温度场分布,建立了单体电池及电池组仿真模型,通过实验与FLUENT软件模拟验证的方式分析单体电池温度场。通过仿真分析讨论电池组温度场,采用三种不同的进出风方式进行空气强制冷却电池组,分析了进出风口有倾角与无倾角的不同温度控制效果,结果表明带有倾角的进出风方式有利于降低电池组最高温度。采用电池组壳体侧面开孔方式进行电池组热管理,可有效改善电池组放电过程的温度分布均匀性。  相似文献   

17.
针对某纯电动客车电池箱散热效果不佳的问题,本文基于CFD技术以该车的电池箱散热系统为研究对象,建立了估算锂离子电池生热速率数学模型,采用三维软件UG建立电池箱的几何模型,并利用软件Star-ccm+对该模型的速度场和温度场进行仿真和分析。通过添加导流板等措施,对电池箱的结构进行了优化改进,并进行了正交仿真实验,确定了电池箱导流散热的最优方案,结果表明,导流板能够降低电池箱内单体电池的最高温度,使电池组温度分布更加均匀。  相似文献   

18.
The higher specific energy leads to more heat generation of a battery, which affects the performance and cycle life of a battery and even results in some security problems. In this paper, the capacity calibration, Hybrid Pulse Power Characteristic (HPPC), constant current (dis)charging, and entropy heat coefficient tests of chosen 11‐Ah lithium‐ion batteries are carried out. The entropy heat coefficient increases firstly and then decreases with the increase of the depth of discharge (DOD) and reaches the maximum value near 50% DOD. An electrochemical‐thermal coupled model of the chosen battery is established and then verified by the tests. The simulation voltage and temperature trends are in agreement with the test results. The maximum voltage and temperature error is within 2.06% and 0.4°C, respectively. Based on the established model, the effects of adjustable parameters on electrochemical characteristic are systematically studied. Results show that the average current density, the thickness of the positive electrode, the initial and maximum lithium concentration of the positive electrode, and the radius of the positive electrode particle have great influence on battery capacity and voltage. In addition, the influence degree of the internal resistance of the solid electrolyte interface (SEI) layer, the thickness of negative electrode, and the initial and maximum lithium concentration of the negative electrode on the capacity and voltage is associated with certain constraints. Meanwhile, the influences of adjustable parameters related to thermal characteristic are also systematically analyzed. Results show that the average current density, the convective heat transfer coefficient, the thickness, and the maximum lithium concentration of the positive electrode have great influence on the temperature rise. Besides, the uniformity of the temperature distribution deteriorates with the increase of the convective heat transfer coefficient.  相似文献   

19.
This article presents an electro‐thermal model of a stack of three lithium ion batteries for automotive applications. This tool can help to predict thermal behaviour of battery cells inside a stack. The open source software OpenFOAM provides the possibility to add heat generation because of Joule losses in a CFD model. Heat sources are introduced at the connectors and are calculated as a function of battery discharge current and internal resistance. The internal resistance is described in function of temperature. Simulation results are validated against experimental results with regard to cooling air flow field characteristic and thermal behaviour of the cell surface. The validation shows that the simulation is capable to anticipate air flow field characteristics inside the battery box. It also predicts correctly the thermal behaviour of the battery cells for various discharge rates and different cooling system conditions. The simulation supports the observation that batteries have a higher temperature close to the connectors and that the temperature increase depends highly on discharge rate and cooling system conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
王博  胡兵  王小娟 《太阳能学报》2022,43(5):454-460
可再生能源的发展势必带动动力电池的发展,在促进退役动力电池循环利用方面也将取得较大成效,在动力电池发展过程中,其安全性是值得广泛关注的重点问题,为提高动力锂电池组放电时散热效率,设计电池组支撑架,采用计算机仿真的方法研究不同支撑架结构、不同工质、不同流速下18650型锂电池构成的动力电池组的热性能。通过对空气和水2种工质流体、工质流速大小、工质入口位置等参数进行组合仿真分析,结果表明,随着工质流速的增加,电池组及支撑架表面的最高温度逐渐降低,当工质流速大于10 m/s时趋于稳定;适当的工质流入口的位置可增强降温效果,在低流速状态下,空气和水分别作为冷却工质时,纵向包裹型电池支撑架比横向包裹型电池支撑架电池组中表面温度分别降低了2.64%和1.86%;在高流速状态下,空气和水分别作为冷却工质时,纵向包裹型电池支撑架比横向包裹型电池支撑架电池组中表面温度分别降低了3.15%和1.83%。动力电池支撑架结构设计可为后续电池热控制提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号