首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the design of the heliostat field layout for solar tower power plant is proposed. In the new method, the heliostat boundary is constrained by the receiver geometrical aperture and the efficiency factor which is the product of the annual cosine efficiency and the annual atmospheric transmission efficiency of heliostat. With the new method, the annual interception efficiency does not need to be calculated when places the heliostats, therefore the total time of design and optimization is saved significantly. Based on the new method, a new code for heliostat field layout design (HFLD) has been developed and a new heliostat field layout for the PS10 plant at the PS10 location has been designed by using the new code. Compared with current PS10 layout, the new designed heliostats have the same optical efficiency but with a faster response speed. In addition, to evaluate the feasibility of crops growth on the field land under heliostats, a new calculation method for the annual sunshine duration on the land surface is proposed as well.  相似文献   

2.
A new code for the design and analysis of the heliostat field layout for power tower system is developed. In the new code, a new method for the heliostat field layout is proposed based on the edge ray principle of nonimaging optics. The heliostat field boundary is constrained by the tower height, the receiver tilt angle and size and the heliostat efficiency factor which is the product of the annual cosine efficiency and the annual atmospheric transmission efficiency. With the new method, the heliostat can be placed with a higher efficiency and a faster response speed of the design and optimization can be obtained. A new module for the analysis of the aspherical heliostat is created in the new code. A new toroidal heliostat field is designed and analyzed by using the new code. Compared with the spherical heliostat, the solar image radius of the field is reduced by about 30% by using the toroidal heliostat if the mirror shape and the tracking are ideal. In addition, to maximize the utilization of land, suitable crops can be considered to be planted under heliostats. To evaluate the feasibility of the crop growth, a method for calculating the annual distribution of sunshine duration on the land surface is developed as well.  相似文献   

3.
高博  刘建兴  孙浩  刘二林 《太阳能学报》2022,43(10):119-125
针对塔式太阳能热发电电站中定日镜场优化布置问题,提出一种基于自适应引力搜索算法的定日镜场优化布置方法。以Campo布置规则为基础建立比目标定日镜场大1.5倍的密集型初始镜场,将定日镜所在环的半径作为输入变量并将年均效率作为镜场优化布置的评价标准。通过在引力搜索算法中引入动态调整因子α,可提高算法在高维搜索问题方面的求解能力。最后以塞维利亚Gemasolar电站的定日镜场为例进行优化布置,证明使用自适应引力搜索算法优化后的定日镜场具有更高的年均效率。  相似文献   

4.
The present study focuses on the optimization of solar tower power plant heliostat field by considering different heliostat shapes including rectangular, square, pentagon, hexagon, heptagon, octagon, and circular heliostat shapes. The optimization is carried out using an in-house developed code-based MATLAB program. The developed in-house code is validated first on a well-known PS10 Solar Thermal Power plant having rectangular heliostats shape and the resulting yearly unweighted heliostat field efficiency of about 64.43% could be obtained. The optimized PS10 heliostat field using different heliostat shapes showed that the circular and octagon heliostat shapes provide better efficiency with minimum land area. The yearly efficiency is increased from 69.65% for the rectangular heliostat shape to 70.96% and 71% for the octagon and circular shapes, respectively. In addition, the calculated field area (land area) is reduced for the case of circular and octagon heliostat shapes with a gain of about 11.10% and 10.93% (about 42.0436 × 103 and 41.4036 × 103 m2), respectively, in comparison with the PS10 field area.  相似文献   

5.
The main handicap of the concentrating solar power technology is still the higher cost compared with the conventional coal power plant. Heliostat arrays cause about 40% of the costs of central receiver power plants. The cost reduction of heliostats is of crucial importance to central receiver power plants. The reduction of wind load on heliostats will decrease the structural requirement for heliostats, and then cut the cost of heliostats. In this paper, different gap sizes (0–40 mm) between the facets of the heliostats were studied experimentally and numerically. Both of the results showed that the wind load increases slightly with the increase of gap size (0–40 mm). The result of the numerical simulation shows the flow pattern through the gap resembles a jet flow which does not affect the static pressure on the windward surface but does decrease the static pressure on the leeward surface of the facets. Consequently it increases the total drag force on the heliostat. However, the absolute increment of the wind load is very small compared with the overall wind load on the heliostat structure. It is not necessary to take account of the gap size effects on the wind load during the design process of heliostat.  相似文献   

6.
Steve Schell 《Solar Energy》2011,85(4):614-619
Central receiver concentrating solar power plants offer significant performance advantages over line-focus systems. However, the high cost of the heliostat field remains a barrier to the widespread adoption of such plants. eSolar has approached the problem of heliostat field cost by emphasizing small size, low cost, easy installation, and high-volume manufacturing of heliostat field components.During 2008 and 2009, eSolar designed, constructed, and began operation of its demonstration facility, which comprises two towers each with heliostat subfields to the north and the south. These heliostat fields are composed of large numbers of small heliostats, creating an arrangement unlike other central receiver plants. This paper describes the design, construction, startup, and testing of these heliostat fields, showing that they perform well and represent a viable alternative to more traditional fields of large heliostats.  相似文献   

7.
The graphical method for a no-blocking radial staggered layout was introduced within the joint work between the Center For Solar Energy Studies (CSES), Tripoli, and Atlantis Energy Ltd, Bern. It locates the heliostats in the field of a solar central receiver plant so that they provide no blocking losses over the year. In this method the field is divided into certain groups to increase the efficient use of land. The method is a simple one when compared to cell-wise procedures, making it more suitable for preliminary design of heliostat fields. At the same time, the method can be represented by a set of mathematical equations, consequently facilitating its computer implementation. In this paper a mathematical formulation of the method will be introduced, as well as its algorithm. Also, a criterion for the transfer to a new heliostat group is proposed based on mirror density.  相似文献   

8.
In this study, differential evolution was employed to perform optimization of a heliostat field. A complete mathematical code was developed for this purpose, which generates a heliostat field and calculates the optimum spacing between heliostats through differential evolution optimization technique. The optimization was executed for two sets of two cases and compared with an un‐optimized case. In the first case, only the optical performance was optimized, whereas in the second case, the normalized ratio of the optical performance to the land area covered by the heliostat field was maximized. In the first set of cases, the extra security distance between the heliostats was neglected, whereas in the second set of cases, the extra security distance was taken into account. To apply and examine the application of the optimization algorithm developed, 3 days of the year were selected: March 21, June 21, and December 21, considering Dhahran, Saudi Arabia as an illustrative example. For June 21, when the extra security distance between the heliostats is neglected, the optical efficiency of the un‐optimized case was 0.6026, while for the first optimized case, it was 0.6395, and for the second optimized case, it was 0.6033. However, when the extra security distance was considered, the optical efficiency of the un‐optimized case was 0.6167; while for the first optimized case, it was 0.6241, and for the second optimized case, it was 0.6167. Similar observations were realized for the other cases selected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, a new model and a biomimetic pattern for heliostat field layout optimization are introduced. The model, described and validated herein, includes a detailed calculation of the annual average optical efficiency accounting for cosine losses, shading and blocking, aberration and atmospheric attenuation. The model is based on a discretization of the heliostats and can be viewed as ray tracing with a carefully selected distribution of rays. The prototype implementation is sufficiently fast to allow for field optimization. Parameters are introduced for the radially staggered layout and are optimized with the objective of maximizing the annual insolation weighted heliostat field efficiency. In addition, inspired by the spirals of the phyllotaxis disc pattern, a new biomimetic placement heuristic is described and evaluated, which generates layouts of both higher insolation-weighted efficiency and higher ground coverage than radially staggered designs. Specifically, this new heuristic is shown to improve the existing PS10 field by 0.36% points in efficiency while simultaneously reducing the land area by 15.8%. Moreover, the new pattern achieves a better trade-off between land area usage and efficiency, i.e., it can reduce the area requirement significantly for any desired efficiency. Finally, the improvement in area becomes more pronounced with an increased number of heliostats, when maximal efficiency is the objective. While minimizing the levelized cost of energy (LCOE) is typically a more practical objective, results of the case study presented show that it is possible to both reduce the land area (i.e. footprint) of the plant and number of heliostats for fixed energy collected. By reducing the capital cost of the plant at no additional costs, the effect is a reduction in LCOE.  相似文献   

10.
提出一种塔式太阳能热发电系统中定日镜调度的方法。根据太阳、定日镜和接收面的光学成像关系,考虑太阳位置、镜面反射率和能见度等因素给出了镜场光能转换效率的计算方法,同时结合定日镜场状态及热力系统所需光功率建立了镜场调度模型。该文将定日镜的调度转化为一个0-1背包问题,设计了一种混合遗传算法来对其求解。采用该调度方法可得到各时刻转换效率最高时所需调用的定日镜数量及其分布,并可调整定日镜瞄准接收靶上分布的目标点,使吸热器上能流分布均匀,降低峰值能流密度,避免过热故障。仿真算例结果表明了该方法的有效性。  相似文献   

11.
12.
Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almería (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the intercept percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model.  相似文献   

13.
Secondary concentrators with non-regular cross section have been proposed to permit additional degrees of freedom in heliostat field design, free of the limitations imposed by conventional rotationally symmetric concentrators. A new class of concentrators with a rectangular cross section was found by numerical optimization for heliostat fields having an elliptic contour with high eccentricity. An example of such a rectangular concentrator was constructed and tested at the Weizmann Institute, where the heliostat field has a strong asymmetry and is poorly suited for symmetric (having regular cross section) concentrators. The performance of the new concentrator has been tested using calorimetric and radiometric measurements. The tests were carried out for several heliostats, located in representative positions relative to the predicted acceptance contours of the concentrator. The results of the tests show an agreement with the prediction, and validate the new design for use with highly eccentric fields. A more general conclusion is the validation of the approach of optimizing faceted secondary concentrators with flexible geometry to match heliostat fields having a wide range of possible contours.  相似文献   

14.
The multi-tower solar array (MTSA) is a new concept of a point focussing two-axis tracking concentrating solar power plant. The MTSA consists of several tower-mounted receivers which stand so close to each other that the heliostat fields of the towers partly overlap. Therefore, in some sectors of the heliostat field neighbouring heliostats are alternately directed to the receivers on different towers. This allows the MTSA to use radiation which would usually remain unused by a conventional solar tower system due to mutual blocking of the heliostats and permits an MTSA to obtain a high annual ground area efficiency (efficiency of usage of ground area). In the sectors close to the towers, where the shading effect predominates, all heliostats are directed to the nearest tower. In sectors further away from the towers, the heliostats are alternately directed to the receivers on two, three, or four different towers. To reduce dilution of the radiation from the field, the number of towers the heliostats in a specific region can be directed to may be limited to two, which causes almost no losses in the annual ground area efficiency.  相似文献   

15.
郭苏  刘德有 《太阳能学报》2007,28(11):1182-1187
经几何光学分析,导出了考虑接收塔阴影影响的太阳能塔式热发电站的定日镜有效利用率计算公式,并通过算例比较了考虑与不考虑接收塔阴影影响的定日镜有效利用率计算结果,验证了这些计算公式的正确性和考虑接收塔阴影影响的合理性。  相似文献   

16.
Concentrated solar power technology is one of the most promising technologies in energy field. Arguably, the heliostat field layout is a crucial component in solar power tower system. Numerous studies have been developed for heliostat field optimization. However, most of the existing layouts which utilize radial staggered patterns are based on only two or four variables, leading to relatively rigid modes due to strong configuration constraints. In this article, we propose a new method called rose layout, which divides the regular radial staggered pattern into six sectors and they are optimized separately. Therefore, the radial increments between consecutive rows are not restricted to zones or rows, only relevant to which sector they belong to. This arrangement is more flexible and also efficient. Furthermore, a new differential evolution algorithm with a dynamic speciation-based mutation strategy (DSM-DE) is developed to solve this high-dimensional problem. In order to validate the proposed rose pattern and DSM-DE, three sets of comparative experiments were carried out. The first set of tests were operated with the conventional four optimization variables, the second series optimized total 43 radial increments between consecutive rows, whereas the third series employed the rose layout. All sets of cases were optimized by four competitive variants of differential evolution algorithm, ie, JADE, SHADE, EB-LSHADE, and DSM-DE. Experimental results verified that the rose layout can obtain higher overall optical efficiency and less land coverage than previous methods and DSM-DE is superior to other DE variants for this high-dimensional problem. The heliostat field studied in this article is simulated in Qinghai, China. By integrating rose layout with DSM-DE, the field unweighted efficiency progressed from 44.386% to 53.972%, and the annual weighted efficiency reached 59.091%, which was 0.318% higher than the 43-variable optimization.  相似文献   

17.
In this article, a new tool is introduced for the purpose of locating sites in hillside terrain for central receiver solar thermal plants. Provided elevation data at a sufficient resolution, the tool is capable of evaluating the efficiency of a heliostat field at any site location. The tool also locates suitable sites based on efficiency and average annual normal insolation. The field efficiency, or ratio of radiation incident to the receiver to direct normal solar radiation, is maximized as a result of factors including projection losses and interference between heliostats, known respectively as cosine efficiency, shading, and blocking. By iteratively defining the receiver location and evaluating the corresponding site efficiency by sampling elevation data points from within the defined heliostat field boundary, efficiency can be mapped as a function of the receiver location. The case studies presented illustrate the use of the tool for two field configurations, both with ground-level receivers and hillside heliostat layouts. While both configurations provide acceptable efficiencies, results from case studies show that optimal sites for ground-level receivers are ones in which the receiver is at a higher elevation than the heliostat field. This result is intuitive from the perspective of minimizing cosine losses but is nevertheless a novel configuration.  相似文献   

18.
In Central Receiver Systems (CRSs), thousands of heliostats track the sunrays and reflect beam radiation on to a receiver surface. The size of the reflected image and the extent of reflection from the heliostats are one of the important criteria that need to be taken into account while designing a receiver, since spillage losses may vary from 2 to 16% of the total losses. The present study aims to determine the size of an external cylindrical receiver, such that the rays reflected from all the heliostats in the field are intercepted. A dimensionless correlation with respect to tower height and receiver size (diameter and height) as a function of heliostat size and its position is discussed in the paper. This correlation could be used as a first-order approximation to estimate the receiver dimensions. When applied to the Ivanpah Solar Electricity Generating Station (ISEGS) plant, the correlation yields satisfactory estimation of receiver dimensions.  相似文献   

19.
定日镜能量传输效率建模及镜场排布设计   总被引:1,自引:0,他引:1  
针对定日镜场的排布,鉴于目前定日镜能量传输效率模型不完善的问题,改进并优化相关能量衰减因子,引入大气透射衰减效率进一步提高定日镜传输效率模型的完善程度,并提出镜场排布设计的具体步骤,仿真结果验证了该模型的高效性。  相似文献   

20.
Recently, the author has shown elsewhere a simplified model that allows quick evaluations of the annual overall energy collected by a surrounding heliostat field. This model is the combination of an analytical flux density function produced by a heliostat, developed by the own author, and an optimized mirror density distribution developed by University of Houston for the Solar One Project. As main conclusion of this previous work, it was recognized that such pseudo-continuous simplified model should not substitute much more accurate discrete evaluations, which manage thousands of individual heliostat coordinates. Here in this work, the difficulty of generating a preliminary discrete layout of a large number of heliostats is addressed. The main novelty is the direct definition of thousands of heliostat coordinates through basically two parameters i.e. a simplified blocking factor and an additional security distance. Such procedure, which was formerly theoretically suggested by the author, is put into practice here, showing examples and commenting their problems and advantages. Getting a previous set of thousands of heliostat coordinates would be a major first step in the complex process of designing solar power tower (SPT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号