共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ahmad Fadzil Sharol Amir Abdul Razak Zafri Azran Abdul Majid Ahmad Fudholi 《国际能源研究杂志》2020,44(2):1000-1011
The intermittent nature of solar radiation has decreased the performance efficiency of solar heaters. Integrating the solar heater with thermal energy storage component could increase its performance effectively. In this article, an investigation on the effect of phase change material (PCM) as the thermal energy storage component on the performance of square aluminum tube was carried out experimentally. In the first phase, the temperature behavior of square aluminum tube with two types of PCM, namely, generic plant-based PCM (A2) and paraffin wax (A3), was compared with square aluminum tube without PCM (A1). In the second phase, the performance of square aluminum tube was investigated with different paraffin wax masses of 38 g (B1), 48 g (B2), and 58 g (B3). Based on the result, the A3 tube configuration performed better than A1 and A2 tube configurations with higher heat gain rate (0.08°C/s) and lower heat discharge rate (−0.04°C/s). The B2 tube configuration was found to have maximum heat gain of 3.73 kJ with higher heat discharge rate as compared with other square tube configurations. The average temperature difference between internal and external surface tube of B2 was lower (4.3°C) leading to higher average temperature difference at ambient temperature of 25.3°C. Instantaneous efficiency of the tube B2 is higher than the B1 and B3 tube configurations by 16% and 26%, respectively. The result suggests that the insertion of paraffin wax inside the square absorber tube improves the temperature response of the absorber in the situation of intermittent solar radiation. 相似文献
3.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120 相似文献
4.
To make better use of solar energy, lauric acid/expanded graphite (LA/EG) composite phase change materials (PCMs) were synthesized to collect and store solar energy as latent heat thermal energy. The results of thermal characteristics show that when the mass fraction of EG is 5%, 10%, and 15%, the latent heat of LA/EG is 164.5, 156.9, and 148.0 J/g, and the thermal conductivity is 2.73, 7.98, and 10.54 W/(m·K). Leakage test shows that LA/EG PCMs with EG mass fraction of 10% and 15% are form stable after phase change. One thousand thermal cycles prove good thermal reliability of LA/EG. TG analysis indicates LA/EG PCMs have good thermal stability within operating temperature range. The Ultraviolet-visible spectra reveal that the absorbance of LA/EG composite PCMs would increase as the mass fraction of EG increases. Photothermal conversion experiment results indicate that the photothermal conversion efficiency of LA/EG composite PCMs increases as the mass fraction of EG increases, and the efficiency can reach 95% when the mass fraction of EG is 15%. Moreover, it was also found that the process of photothermal conversion can be accelerated with stronger illumination intensity or smaller heat transfer size. All the results show that the prepared LA/EG PCMs can convert solar energy into thermal energy and store it in the form of latent heat at the same time, which indicates it has promising prospect in the application of solar energy conversion and storage. 相似文献
5.
The storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on efficient use and conservation of the waste heat and solar energy in industry and buildings. Latent heat storage is one of the most efficient ways of storing thermal energy. Solar energy is a renewable energy source that can generate electricity, provide hot water, heat and cool a house, and provide lighting for buildings. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require a large surface area. Hydrated salts have a larger energy storage density and a higher thermal conductivity. In response to increasing electrical energy costs and the desire for better lad management, thermal storage technology has recently been developed. The storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on the efficient use and conservation of the waste heat and solar energy in the industry and buildings. Thermal storage has been characterized as a kind of thermal battery. 相似文献
6.
Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
Here, a simplified analytical model has been proposed to predict solid fraction, solid–liquid interface, solidification time, and temperature distribution during solidification of phase change material (PCM) in a two‐dimensional latent heat thermal energy storage system (LHTES) with horizontal internal plate fins. Host of boundary conditions such as imposed constant heat flux, end‐wall temperature, and convective air environment on the vertical walls are considered for the analysis. Heat balance integral method was used to obtain the solution. Present model yields closed‐form solution for temperature variation and solid fraction as a function of various modeling parameters. Also, solidification time of PCM, which is useful in optimum design of PCM‐based thermal energy storages, has been evaluated during the analysis. The solidification time was found to be reduced by 93% by reducing the aspect ratio from 8 to 0.125 for constant heat flux boundary condition. While, for constant wall temperature boundary condition, the solidification time reduces by 99% by changing the aspect ratio from 5 to 0.05. In case of convective air boundary surrounding, the solidification time is found to reduce by 88% by reducing the aspect ratio from 8 to 0.125. Based on the analytical solution, correlations have been proposed to predict solidification time in terms of aspect ratio and end‐wall boundary condition. 相似文献
8.
Temperature fluctuations during storage and transportation are the most important factors affecting quality and shelf life of food products. Phase change materials (PCM) with their isothermal characteristics are used to control temperature in various thermal operations. In this study, octanoic acid as PCM candidate was used in a packaging material design for thermal control of a food product. The PCM candidate was microencapsulated in different shell materials in our laboratory. Among the synthesized microcapsules, microencapsulated PCM (mPCM) (ΔHm = 42.9 J/g) with styrene polymer as the shell material was selected based on its properties of being cost effective and compatibility with human health. Thermal buffering effect of PCM in bulk and microencapsulated forms was tested in a packaging design with special PCM pockets. Results showed that packages with mPCM and bulk PCM provided 8.8 and 6 hours of thermal buffering effect for 160 g of chocolate compared with the package without PCM (reference package). 相似文献
9.
Energy and Exergy Analysis of a Single‐Pass Sequenced Array Baffled Solar Air Heater with Packed Bed Latent Storage Unit for Nocturnal Use
下载免费PDF全文

The current study presents an experimental investigation on evaluation of thermal performance of a single‐pass double‐glazed solar air heater with the use of packed bed paraffin wax as a phase change material (PCM). Moreover, the absorber plate is equipped with baffles attached over its top. Galvanized sheets with a thickness of 0.4 mm and total surface areas of 30 cm2 are chosen as baffles that are placed in a sequential manner over the absorber plate. The solar energy was stored in the packed bed PCM during the diurnal period (charging process) and was released at night for nocturnal use (discharging process). The tests were performed at three different mass flow rates of 0.009 0.014 and 0.017 resulting in the creation of different Reynolds numbers along the channel. The measured parameters were inlet, outlet, and the PCM temperatures under the meteorological condition of Mashhad, Iran. Energy and exergy efficiencies of the system have been calculated according to the first and second laws of thermodynamics. The experimental results illustrate that the daily energy efficiency varied between 20.7% and 26.8%, whereas the daily exergy efficiency varied between 10.7% and 19.5%. 相似文献
10.
Latent heat thermal energy storage refers to the storage and recovery of the latent heat during the melting/solidification process of a phase change material (PCM). Among various PCMs, medium‐ and high‐temperature candidates are attractive due to their high energy storage densities and the potentials in achieving high round trip efficiency. Although a few review studies on high‐temperature PCMs have emerged in the past few years, the quantity, completeness, and accuracy of the presented data are relatively poor. Also, an efficient indexing methodology for retrieving useful PCM data is missing in the open literature. In this article, we created an up‐to‐date PCM database following a holistic review of the PCMs in medium‐ and high‐temperature applications over a temperature range of 100°C to 1680°C. Such effort then allows us to develop an accurate indexing tool for the fast selection of suitable PCM candidates and extraction of the related property data. More specifically, the created PCM database covers 496 entries of PCM materials, which are extracted from the scattered research works published during the year 1956 to 2017. The collected information includes both the basic thermo‐physical properties of PCMs (eg, melting temperature, heat of fusion, and thermal conductivity) and crucial design factors during construction and engineering phases (eg, energy storage density, volume expansion, liquid/solid densities, and cost). The reviewed PCMs comprise a wide variety of materials, including fluorides, chlorides, hydrates, nitrates, carbonates, metals and alloys, and other uncommon compounds and salts. In addition, the current work presents a brief review on high‐temperature latent heat thermal energy storage systems categorized into metallic and non‐metallic systems. The corrosivity and stability of PCMs, which are commonly ignored in previous studies, are also examined. 相似文献
11.
Microencapsulation of phase change material with poly(ethylacrylate) shell for thermal energy storage
下载免费PDF全文

Yeliz Konuklu 《国际能源研究杂志》2014,38(15):2019-2029
Microcapsules containing caprylic acid and polyethylacrylate shells were prepared using an emulsion polymerization technique for thermal energy storage applications. Ethylene glycol dimethacrylate was used as a crosslinking agent. The influence of the crosslinking agent concentration on the phase change properties of microcapsules was examined. The caprylic acid microcapsules (MicroPCMs) were analyzed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and differential scanning calorimetry. The results showed that microcapsules were synthesized successfully and that the best shell material:crosslinking agent concentration ratio was 1:0.2. The melting and freezing temperatures were measured through differential scanning calorimetry analysis and found to be 13.3 and 7.1°C, respectively. The melting and crystallization heats were determined to be 77.3 and ?77.0 kJ/kg, and the mean particle diameter was 0.64 μm. The thermal cycling tests of the microcapsules were performed for 400 heating/cooling cycles, and the results indicate that the synthesized microcapsules have good thermal reliabilities. Air stability test proved that the thermal properties and physical form of microcapsules were not affected by air. We recommend the prepared thermal, air, and chemically stable caprylic acid microcapsules for thermal energy storage applications as novel microPCM with latent heat storage capacities and properties. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
13.
14.
In the existent paper, the performance of thermal storage hybrid buildings exploiting the latent heat of phase change materials (PCMs) for thermal refrigeration and heating of the contemporary period has been investigated. The conventional buildings consume a large amount of electricity, primarily for the heating and cooling applications. Electricity generation primarily relies on coal-based thermal power plants. The emissions from these establishments pose a serious threat to the environment. Moreover, conventional heating/cooling units rely on exorbitant energy cost. The usage of any kind of thermal storage system is an efficacious way of stockpiling thermal energy and utilizing it when needed. This paper gives a comprehensive overview of the available thermal storage units incorporating PCMs. The various segments of the buildings, viz, ceiling, window, wall, and floor have been analyzed in details. The results are quite promising in terms of load reduction and overall energy saving. Indoor surface temperature reduction of up to 7oC has been achieved. The energy saving of up to 40% can be realized by employing PCM. A comprehensive list of the PCMs is also tried to build up for end users according to their temperature requirement. 相似文献
15.
Latent heat storage system using phase change materials (PCMs) has been recognized as one of the most useful technologies for energy conservation. In this study, a novel type of fatty acid eutectic of methyl palmitate (MP) and lauric acid (LA)/polyacrylonitrile (PAN) composite phase change fiber is prepared by single electrospinning method. Additionally, copper nanoparticles (CNPs) with different mass ratio are combined for improving the thermal conductivity of the PCM. The structure and morphology of the fabricated composite PCMs are observed by scanning electron microscopy (SEM), and the thermal properties and performance are also characterized. SEM results show that the liquid fatty acid has been fully stabled by the three-dimensional structure of the fibers. Good compatibility among the components of the composites is also demonstrated. Besides, the addition of nanoparticles leads to an improved thermal conductivity by over 115.2% and a phase transition temperature 21.24 °C as well as a high latent heat of 85.07 J/g. Moreover, excellent thermal reliability of the phase change fiber is confirmed by multiple thermal cycles. Hence, the composite PCM prepared in this study shows a promising potential for thermal energy system such as building insulating and thermal mass regulating textiles. 相似文献
16.
Sivarathinamoorthy Haldorai Sureshkannan Gurusamy Maruthaiyan Pradhapraj 《国际能源研究杂志》2019,43(12):6061-6077
The drying needs of agricultural, industrial process heat requirements and for space heating, solar energy is one of the prime sources which is renewable and pollution free. As the solar energy is inconsistent and nature dependent, more often there is a mismatch between the solar thermal energy availability and requirement. This drawback could be addressed to an extent with the help of thermal energy storage systems combined with solar air heaters. This review article focuses on solar air heaters with integrated and separate thermal energy storage systems as well as greenhouses with thermal storage units. A comprehensive study was carried out in solar thermal storage units consisting of sensible heat storage materials and latent heat storage materials. As the phase change heat storage materials offer many advantages over the sensible heat storage materials, the researchers are more interested in this system. The charging and discharging characteristics of thermal storage materials with various operational parameters have been reported. All the possible solar air heater applications with storage units have also been discussed. 相似文献
17.
The efficient implementation of solar systems in buildings depends on the storage of energy yielded, as it can both increase the solar system's autonomy and make it a feasible solution for zero energy buildings, and make storage vessels more compact, reducing precious space requirements. This is of particular important in places with reduced time of sunshine, where solar systems are less effective, because of the deviation between solar radiation and the demand. The traditional storage options use water, which is practical, safe and low‐cost, especially when the storage requirements are small. However, when larger storage is needed, limits concerning the use of water exist, mainly due to the need for larger installation space and the increased thermal losses. The use of phase change materials (PCM) for thermal energy storage seems an upcoming technology. The main idea is the substitution of water with PCM, which feature larger specific energy storage capacity compared to other conventional materials. In the context of the specific paper, a combined solar thermal system used for the preparation of domestic hot water (DHW) and space heating (Solar Combi System) with two different types of storage is studied, for two Greek cities. The aim is to find out which is the most efficient way of storing energy with respect to the autonomy of the system, for a solar combi system. This is being achieved by determining the comparative autonomy of PCM and water storage system for various climates. It was proven that using PCM is advantageous, as it can extend the autonomy duration of the solar system for 2 to 8 hours, depending on the season and the climatic conditions. However, it was also seen that in solar combi systems used throughout the whole year, PCM are inefficient during summer period. 相似文献
18.
In this work, a heat storage vacuum tube solar collector intubated with heat storage tube is designed, which consists of solar vacuum tube, phase change material insert tube, and heat holding cover. The internal energy conversion, transmission, and storage theory are established based on the structure of the heat storage vacuum tube. The parallel and series‐parallel solar air collector system prototype consisting of nine heat storage solar vacuum tube solar collectors is designed and tested. The test results showed that the daily average conversion efficiency of the parallel and series‐parallel prototype reached 56.9% and 48.46%, respectively. Compared with nonheat storage prototype, the heat storage parallel and series‐parallel prototype had higher conversion efficiency by, respectively, 10.9% and 7.8%, longer effective heating time, and better heating stability and practicability. At the same time, the heat storage solar collector has compact structure, which is convenient to use. 相似文献
19.
20.
直接接触式蓄热技术利用换热工质与蓄热材料接触并形成对流换热的特点,强化了蓄热器内的换热效果,提高了蓄放热速率,在国内外受到了广泛关注。本文针对直接接触式蓄热技术,从蓄热材料、蓄热器和应用案例三个方面对该技术的发展和研究现状进行了总结,将直接接触式蓄热技术常见材料分为了有机类材料和无机类材料,并对材料的热物性参数和性能进行了比较,讨论了过冷、相分离、导热系数较低和热稳定性等影响材料性能的关键指标。在蓄热器方面,总结了直接接触式蓄热器内材料熔化和流动规律、归纳了直接接触式蓄热器传热和优化方法,针对目前解决直接接触式蓄热器材料沉积问题的措施进行了分析,并给出了建议措施。最后,结合示范工程或商业案例对直接接触式蓄热技术的应用情况进行了回顾,旨在总结应用经验,为该技术的进一步推广提供依据和支持。 相似文献