首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.  相似文献   

2.
为利用太阳能获得稳定持续的高温空气工质,除了有效集热外,还需要解决因太阳辐射强度变化导致输出工质温度波动的问题。在性能优良的太阳能集热系统中采用蓄热技术是解决此问题的有效途径。根据给定的设计目标,研究将固-固相变蓄热材料季戊四醇应用到太阳能集热蓄热一体化的实验装置中。实验结果表明:按集热蓄热一体化思路设计的实验装置,集热单元能够输出最高温度超过220℃的高温空气,蓄热单元能够将高温空气的温度稳定在蓄热材料的相变温度附近。并且随着蓄热管级数的增加,空气出口温度稳定的时间就越长,为利用太阳能获得稳定持续的高温热媒工质奠定了基础。  相似文献   

3.
In this experimental study, solar energy was stored daily using the volcanic material with the sensible heat technique. The external heat collection unit consisted of 27 m2 of south‐facing solar air collectors mounted at a 55° tilt angle. The dimensions of the packed‐bed heat storage unit were 6 × 2 × 0.6 m deep. The packed‐bed heat storage unit was built under the soil. The heat storage unit was filled with 6480 kg of volcanic material. Energy and exergy analyses were applied in order to evaluate the system efficiency. During the charging periods, the average daily rates of thermal energy and exergy stored in the heat storage unit were 1242 and 36.33 W, respectively. Since the rate of exergy depends on the temperature of the heat transfer fluid and surrounding, the rate of exergy increased as the difference between the inlet and outlet temperatures of the heat transfer fluid increased during the charging periods. It was found that the average daily net energy and exergy efficiencies in the charging periods were 39.7 and 2.03%, respectively. The average daily net energy efficiency of the heat storage system remained nearly constant during the charging periods. The maximum energy and exergy efficiencies of the heat storage system were 52.9 and 4.9%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The increase in exergy storage capacity that is attained in thermal storages through stratification is assessed. A design‐oriented temperature‐distribution model for vertically stratified thermal storages that facilitates the evaluation of storage energy and exergy contents is utilized. The paper is directed towards demonstrating the thermodynamic benefits achieved through stratification, and increasing the utilization of exergy‐based performance measures for stratified thermal storages. A wide range of realistic storage‐fluid temperature profiles is considered, and for each the relative increase in exergy content of the stratified storage compared to the same storage when it is fully mixed is evaluated. The results indicate that, for all temperature profiles considered, the exergy storage capacity of a thermal storage increases when it is stratified, and increases as the degree of stratification, as represented through greater and sharper spatial temperature variations, increases. Furthermore, the percentage increase in exergy capacity is greatest for storages at temperatures near to the environment temperature, and decreases as the mean storage temperature diverges from the environment temperature (to either higher or lower temperatures). It is concluded that (i) the use of stratification in thermal storage designs should be considered as it increases the exergy storage capacity of a thermal storage and (ii) exergy analysis should be applied in the analysis and comparison of stratified thermal storage systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a theoretical analysis and an experimental test on a shell‐and‐tube latent heat storage exchanger. The heat exchanger is used to recover high‐temperature waste heat from industrial furnaces and off‐peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase‐change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
熔融盐具有液体温度范围宽,黏度低,流动性能好,蒸汽压小,对管路承压能力要求低,相对密度大,比热容高,蓄热能力强,成本较低等诸多优点,已成为一种公认的良好的中高温传热蓄热介质.本文对熔融盐显热蓄热技术原理和发展现状进行了简要概述,包括熔融盐的种类,熔融盐显热蓄热技术的原理,关键技术,研发现状及其在太阳能热发电和间歇性余热利用中的应用.认为开展高温熔融盐传热蓄热介质制备,热性能表征和熔融盐流动与传热性能研究,进而完善整个熔融盐蓄热系统,提高蓄热效率,降低管路腐蚀性,提高系统可靠性仍将是未来熔融盐蓄热技术的研究重点.  相似文献   

7.
In this study, a theoretical approach is proposed for the prediction of time and temperature during the heat charge and discharge in the latent heat storage of phase changed materials (PCM). By the use of the average values of the mean specific heat capacities for the phase‐changed materials, analytical solutions are obtained and compared with the available experimental data in the literature. It is shown that decreasing the entry temperature of the working fluid from ?4 to ?15°C has a very dominant and strong effect on the PCM solidification time. The effect of the working fluid flow rate and the material of PCM capsules on the time for complete solidification and total charging is also investigated. The agreement between the present theoretical model results and the experimental data related to the cooling using small spheres and the heat storage using rectangle containers is very good. The largest difference between the present results and the experimental data becomes about 10% when the fluid temperature approaches the phase change temperature at high temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In the following work, a seasonal thermal energy storage using paraffin wax as a PCM with the latent heat storage technique was attempted to heat the greenhouse of 180 m2 floor area. The system consists mainly of five units: (1) flat plate solar air collectors (as heat collection unit), (2) latent heat storage (LHS) unit, (3) experimental greenhouse, (4) heat transfer unit and (5) data acquisition unit. The external heat collection unit consisted of 27 m2 of south facing solar air heaters mounted at a 55° tilt angle. The diameter and the total volume of the steel tank used as the latent heat storage unit were 1.7 m and 11.6 m3, respectively. The LHS unit was filled with 6000 kg of paraffin, equivalent to 33.33 kg of PCM per square meter of the greenhouse ground surface area. Energy and exergy analyses were applied in order to evaluate the system efficiency. The rate of heat transferred in the LHS unit ranged from 1.22 to 2.63 kW, whereas the rate of heat stored in the LHS unit was in the range of 0.65–2.1 kW. The average daily rate of thermal exergy transferred and stored in the LHS unit were 111.2 W and 79.9 W, respectively. During the experimental period, it was found that the average net energy and exergy efficiencies were 40.4% and 4.2%, respectively. The effect of the temperature difference of the heat transfer fluid at the inlet and outlet of the LHS unit on the computed values of the energy and exergy efficiency is evaluated during the charging period.  相似文献   

9.
The current latent heat storage (LHS) units are usually poor in energy charging and discharging efficiency. Given this, a two dimensional (2D) numerical model of the energy discharging process is presented and comprehensively analyzed to predict the role of metal foam in the solidification performance of LHS units. In the model, the fractal geometry reconstructed by the fractal Brownian motion is utilized for the pore characterization of the metal foam. The proposed model is validated through a melting experiment in copper foams from the reference. The temperature dynamic response and the solidification front evolution in metal foam are analyzed and compared to those in a corresponding cavity. The roles of the fractal dimension and porosity in the solidification behaviors are quantitatively analyzed. The results report that the presence of metal foam enhances the solidification performance. For the main goal of maximizing the latent storage, the appropriate porosity of an LHS unit is dependent on the duration time for the heat discharging process in the real application of thermal energy storage. Even if the porosity is the same, the fractal dimension also affects the solidification performance. A decrease in the fractal dimension (lower degree of disorder for pore distribution) provides greater access to heat flow through the phase change material-foam composite and thus leads to improvement in the interstitial heat transfer, which in turn accelerates the rate of heat release. The fractal dimension is expected to be less than 1.5 for superior solidification performance.  相似文献   

10.
A simple thermoeconomic analysis is performed for a seasonal latent heat storage system for heating a greenhouse. The system consists of three units that are a set of 18 packed‐bed solar air heaters, a latent heat storage tank with 6000 kg of technical grade paraffin wax as phase‐changing material, and a greenhouse of 180 m2. The cost rate balance for the output of a unit is used to estimate the specific cost of exergy for a yearly operation. Based on the cost rate of exergy, fixed capital investment, operating cost, and economic data, approximate cash‐flow diagrams have been prepared. The systems feasibility depends on the cost rate of exergy, operating cost, internal interest rate, and rate of taxation strongly. A cash‐flow diagram based on exergy considerations may enhance the impact of thermoeconomic analysis in feasibility studies of thermal systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Latent heat thermal energy storage refers to the storage and recovery of the latent heat during the melting/solidification process of a phase change material (PCM). Among various PCMs, medium‐ and high‐temperature candidates are attractive due to their high energy storage densities and the potentials in achieving high round trip efficiency. Although a few review studies on high‐temperature PCMs have emerged in the past few years, the quantity, completeness, and accuracy of the presented data are relatively poor. Also, an efficient indexing methodology for retrieving useful PCM data is missing in the open literature. In this article, we created an up‐to‐date PCM database following a holistic review of the PCMs in medium‐ and high‐temperature applications over a temperature range of 100°C to 1680°C. Such effort then allows us to develop an accurate indexing tool for the fast selection of suitable PCM candidates and extraction of the related property data. More specifically, the created PCM database covers 496 entries of PCM materials, which are extracted from the scattered research works published during the year 1956 to 2017. The collected information includes both the basic thermo‐physical properties of PCMs (eg, melting temperature, heat of fusion, and thermal conductivity) and crucial design factors during construction and engineering phases (eg, energy storage density, volume expansion, liquid/solid densities, and cost). The reviewed PCMs comprise a wide variety of materials, including fluorides, chlorides, hydrates, nitrates, carbonates, metals and alloys, and other uncommon compounds and salts. In addition, the current work presents a brief review on high‐temperature latent heat thermal energy storage systems categorized into metallic and non‐metallic systems. The corrosivity and stability of PCMs, which are commonly ignored in previous studies, are also examined.  相似文献   

12.
In this study heat pump systems having different heat sources were investigated experimentally. Solar‐assisted heat pump (SAHP), ground source heat pump (GSHP) and air source heat pump (ASHP) systems for domestic heating were tested. Additionally, their combination systems, such as solar‐assisted‐ground source heat pump (SAGSHP), solar‐assisted‐air source heat pump (SAASHP) and ground–air source heat pump (GSASHP) were tested. All the heat pump systems were designed and constructed in a test room with 60 m2 floor area in Firat University, Elazig (38.41°N, 39.14°E), Turkey. In evaluating the efficiency of heat pump systems, the most commonly used measure is the energy or the first law efficiency, which is modified to a coefficient of performance for heat pump systems. However, for indicating the possibilities for thermodynamic improvement, inadequate energy analysis and exergy analysis are needed. This study presents an exergetic evaluation of SAHP, GSHP and ASHP and their combination systems. The exergy losses in each of the components of the heat pump systems are determined for average values of experimentally measured parameters. Exergy efficiency in each of the components of the heat pump systems is also determined to assess their performances. The coefficient of performance (COP) of the SAHP, GSHP and ASHP were obtained as 2.95, 2.44 and 2.33, whereas the exergy losses of the refrigerant subsystems were found to be 1.342, 1.705 and 1.942 kW, respectively. The COP of SAGSHP, SAASHP and GSASHP as multiple source heat pump systems were also determined to be 3.36, 2.90 and 2.14, whereas the exergy losses of the refrigerant subsystems were approximately 2.13, 2.996 and 3.113 kW, respectively. In addition, multiple source heat pump systems were compared with single source heat pump systems on the basis of the COP. Exergetic performance coefficient (EPC) is introduced and is applied to the heat pump systems having various heat sources. The results imply that the functional forms of the EPC and first law efficiency are different. Results show that Exloss,total becomes a minimum value when EPC has a maximum value. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Recently, a critical problem of latent heat thermal energy storage remains the low thermal conductivity of phase change materials (PCMs), which can lead to low heat transfer rate. Structural optimization design is an effective solution for this problem. In this work, two horizontal shell-and-tube heat exchangers (HEs) with one inner tube (n = 1) and four inner tubes (n = 4) are designed keeping the same amount of PCM and water flow rate, and their melting and solidification thermal performance and heat transfer characteristics are compared. The results show that in comparison with one-inner-tube HE, the temperature of detected points are affected by both upper and lower inner tubes for four-inner-tube HE, thus the differences in phase change process appear. In addition, the phase change time reduction rates are 34.1%, 33.39%, 28.82% at Tin (inlet water temperature) = 75°C, 80°C, 85°C during charging process, and 17.2%, 27.69%, 36.67% at Tin = 10°C, 15°C, 20°C during discharging process, respectively. In comparison with the one-inner-tube HE, the theoretical efficiency of four-inner-tube HE is increased from 75.88% to 90.34%. Although more friction loss should be paid by four-inner-tube HE, a lower energy consumption and a higher heat-energy ratio are achieved. Based on the results of this study, the amount of cumulative heat per energy consumption is 1.52 × 108 and 2.88 × 108 for one-inner-tube and four-inner-tube HE, respectively.  相似文献   

14.
泡沫铜强化石蜡相变蓄热特性的数值分析   总被引:1,自引:0,他引:1  
通过构建泡沫金属内固液相变传热模型,对方腔蓄热单元中泡沫铜强化石蜡相变蓄热特性进行数值分析。数值模型采用考虑泡沫金属真实结构的等效导热系数通用模型,并兼顾石蜡在融化前后与金属骨架之间的热非平衡效应。通过求解模型得到方腔内石蜡固液界面演化规律与温度分布,进而对蓄热过程进行火用分析。结果表明:当前数值模型能较好地预测泡沫铜内固液相变传热;泡沫铜显著改善了石蜡相变的空间均匀性,减小了蓄热区温度梯度,使蓄热速率和火用效率得到有效提高。  相似文献   

15.
This paper presents a brief review of the available latent heat storage systems for solar energy utilization. A new concept of latent heat storage of solar energy via the refrigerant-absorbent mass storage in absorption cycle heat pump systems used for solar space heating/cooling has been proposed and assessed thermodynamically. A computer modelling and numerical simulation study shows that the concept of refrigerant storage is fundamentally sound, technically feasible and yields the following advantages over other storage methods: (i) the storage capacity per unit volume is high as the latent heat of vaporization of the refrigerant is high; (ii) the heat loss from the storage to the surroundings is minimum as the storage temperature is near the ambient; (iii) prolonged energy storage is possible with no degradation in system performance and hence suitable for combined solar heating and airconditioning. The effects of operating parameters on the energy storage concentration and storage efficiency have been studied in detail.  相似文献   

16.
The operation of a three‐heat‐reservoir heat pump is viewed as a production process with exergy as its output. The relations between the optimal profit and COP (coefficient of performance), and the COP bound at the maximum profit of the heat pump are derived based on a general heat transfer law. The results provide a theoretical basis for developing and utilizing a variety of heat pumps. The focus of this paper is to search the compromised optimization between economics (profit) and the utilization factor (COP) for finite‐time endoreversible thermodynamic cycles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, numerical results pertaining to cyclic melting and freezing of an encapsulated phase‐change material (PCM) have been reported. The cyclic nature of the present problem is relevant to latent heat thermal energy storage system used to power solar Brayton engines in space. In particular, a physical and numerical model of the single‐tube phase change heat storage system was developed. A high‐temperature eutectic mixture of LiF‐CaF2 was used as the PCM and dry air was used as the working fluid. Numerical results were compared with available experimental data. The trends were in close agreement. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 32–41, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10132  相似文献   

18.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

19.
In this paper, sensible heat storage (SHS) systems and performance evaluation techniques are studied. A detailed investigation is presented of the availability of SHS techniques for solar thermal applications, selection criteria for SHS systems, the economics of SHS systems, the main issues in evaluating SHS systems, the viability of SHS systems, the environmental impacts of SHS systems and criteria for SHS feasibility studies, as well as energy saving options. In addition to energy and exergy analyses, several definitions of energy and exergy efficiency for the performance of SHS systems are provided with an illustrative example. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
低熔点合金具有导热系数高,储能密度大,使用温度范围广,性能稳定等特点,是一种潜在的宽温域传热工质和中低温相变储热材料.结合低熔点合金的相变温度,相变潜热,热导率及相变稳定性等热物理性能,综述了低熔点合金相变储热材料的研究进展;介绍了液态低熔点合金传热材料的蒸汽压,表面张力,黏度及比热容等性能,以及低熔点合金在高温下与容器材料的相容性;对低熔点合金传热储热材料的下一步研究进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号