共查询到20条相似文献,搜索用时 62 毫秒
1.
基于流数据的模糊聚类算法 总被引:1,自引:0,他引:1
对流数据进行有效聚类是一个吸引研究者很大注意力的问题.传统的聚类挖掘算法只能适用于纯数值属性数据或纯分类属性数据,很难适用于混合属性的数据.针对混合属性数据的特点,在借鉴AcluStream算法的基础上,提出了一种模糊聚类算法.算法对流数据的相异度分类度量,定量属性使用欧氏距离和曼哈坦距离度量,定性属性可以采用hamming距离度量.模糊聚类算法的主要步骤有两步:第一步,运用最小距离聚类算法进行聚类,构成一个初始类.第二步,对基于最小距离聚类算法进行聚类所得到的初始簇,运用密度聚类方法进行聚合或分割,使得聚类集合稳定.实践证明:该算法是快速地有效的. 相似文献
2.
3.
传感器节点的资源是有限的,高的通信开销会消耗大量的电量。为了减小分布式流数据分类算法的通信开销,提出一种高效的分布式流数据聚类算法。该算法包含在线局部聚类和离线全局协同聚类两个阶段。在线局部聚类算法将每个流数据源进行局部聚类,并将聚类后的结果通过序列化技术发往协同节点;协同节点得到来自不同流数据源的局部聚类信息后进行全局聚类。从实验中可以看出,当不断增加窗口的大小时,算法用于数据发送的时间恒定不变,算法的聚类时间和总的时间呈线性增长,即所提出算法的执行时间不受滑动窗口宽度和聚类个数的影响;同时该算法与集中式算法的准确性接近,并且通信开销远远小于相关的分布式算法。实验结果表明,该算法具有很好的可扩展性,可应用于对大规模分布式流数据源进行聚类分析。 相似文献
4.
Web流数据聚类挖掘技术研究 总被引:1,自引:0,他引:1
彭源 《数字社区&智能家居》2010,(4):935-936
流数据作为近年来比较重要的一种数据形式,得到了广泛的关注。但由于流数据本身的特点,无法使用传统的算法来对其进行聚类分析。文中在介绍流数据等基本概念的基础上,讨论了流数据聚类的特点,并介绍了目前较为常用的流数据聚类算法。 相似文献
5.
传统的数据库管理系统和数据查询算法不能很好地支持对流数据的查询已经被广泛认识,因而需要研究新的流数据模式查询算法.提出了一种基于摘要技术的在线快速混合模型流数据聚类算法,该算法为分阶段混合模型聚类过程.算法首先时最初到达的流数据用多维网格结构进行划分,对划分形成的每一个单元进行数据摘要,提取足够的统计信息.对该摘要运行基于模型的贪心聚类算法,聚类形成的混合模型的摘要信息存储在永久摘要数据库中,从而形成初始聚类混合模型;在聚类模型的维持过程中,当不断有流数据到达时,对到达的数据块用多维网格结构进行划分,对划分形成的每一个单元提取足够的摘要信息.对该摘要运行基于模型的贪心聚类算法形成聚类混合模型.在判断是否可以把新到达的模型合并到现有的混合模型中去时,提出了三种合并标准.实验表明,该算法减少了分类误差,其速度也比传统的基于模型的贪心聚类算法大大加快. 相似文献
6.
7.
丘威 《数字社区&智能家居》2013,(12):7767-7769
提出一种能够有效处理大规模分布的数据聚类问题且简化计算复杂度的分阶段非线性聚类方法,该算法包含两个阶段:首先将数据划分为若干个球形分布的子类,采用K近邻图理论对原始数据计算顶点能量并提取顶点攻能量样本;再采用K近邻算法对该高能量样本做一个划分,从而得到一个考虑高能量样本的粗划分同时估计出聚类的个数,最后,综合两次聚类结果整理得到最终聚类结果。该方法的主要优点是可以用来处理复杂聚类问题,算法较为稳定,并且在保持聚类正确率的同时,降低了大规模分布数据为相似性度量的计算代价。 相似文献
8.
9.
在现有的算法DBSCAN基础上,提出一种基于密度的处理购物篮事务数据的聚类方法-DCMBD(density-based clustering for market basketdata)。使用了一种新的事务表示法,解决了购物篮数据的高维性和稀疏性问题。并对算法进行了相应的改进,从而提高了聚类速度。实验结果表明此方法是有效可行的。 相似文献
10.
根据目前数据挖掘研究的现状,分析不确定数据的聚类挖掘算法。针对不确定数据聚类挖掘存在的问题,提出改进传统的数据挖掘算法来适合不确定数据的聚类挖掘或找出新的聚类挖掘算法,来解决不确定数据聚类挖掘问题的新思路。 相似文献
11.
由于数据流数据的动态性、时序性和数据量大等特点使得数据流上的数据挖掘变得更加困难和富有挑战.通过对Squeezer聚类算法的研究分析,并基于此算法提出了一种新的基于聚类的数据流离群数据检测算法O-Squeezer.把数据流看成一个随时间变化的过程,并将其分成许多数据分区,在每个数据块内用改进的O-Squeezer算法挖掘离群数据.理论分析和实验表明,算法可以有效发现数据流中的局部离群数据,算法是可行的. 相似文献
12.
13.
14.
许多应用程序会产生大量的流数据,如网络流、web点击流、视频流、事件流和语义概念流。数据流挖掘已成为热点问题,其目标是从连续不断的流数据中提取隐藏的知识/模式。聚类作为数据流挖掘领域的一个重要问题,在近期被广泛研究。不同于传统的静态数据聚类问题,数据流聚类面临有限内存、一遍扫描、实时响应和概念漂移等许多约束。本文对数据流挖掘中的各种聚类算法进行了总结。首先介绍了数据流挖掘的约束;随后给出了数据流聚类的一般模型,并描述了其与传统数据聚类之间的关联;最后提出数据流聚类领域中进一步的研究热点和研究方向。 相似文献
15.
数据流的无限性、连续性和速度快等特点;使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法;该算法的空间复杂性为O(1/ε);数据流每个数据项的最坏处理时间是O(1/ε);其最好处理时间是O(1);输出结果的频率值误差为∑_(i=2)^j(1-μi)×ki。 相似文献
16.
17.
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。 相似文献
18.
19.
数据流的无限性、高速性使得经典的频繁模式挖掘方法难以适用到数据流中。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁模式挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集,然后利用Count-Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过实验分析,FP-SegCount算法是有效的。 相似文献
20.
面向数据流的频繁项集挖掘研究 总被引:1,自引:0,他引:1
孟彩霞 《计算机工程与应用》2010,46(24):138-140
针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁项集挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集。然后,利用Count Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率。 相似文献