首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

2.
A mesoporous Ni-Al2O3 composite catalyst (Ni-A-NS) was prepared by a single-step non-ionic surfactant-templating method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel catalyst supported on mesoporous alumina (Ni/A-NS) was also prepared by an impregnation method. The effect of physicochemical properties on the performance of Ni-A-NS catalyst in the steam reforming of LNG was investigated. Ni-A-NS catalyst retained superior textural properties compared to Ni/A-NS catalyst. Nickel oxide species were highly dispersed on the surface of both Ni/A-NS and Ni-A-NS catalysts through the formation of surface nickel aluminate phase. Although both Ni/A-NS and Ni-A-NS catalysts exhibited a stable catalytic performance, Ni-A-NS catalyst showed a better catalytic performance than Ni/A-NS catalyst in the steam reforming of LNG. High nickel surface area and high nickel dispersion of Ni-A-NS catalyst played an important role in enhancing the dehydrogenation reaction of hydrocarbon species and the gasification reaction of adsorbed carbon species in the steam reforming of LNG. High reducibility of Ni-A-NS catalyst was also responsible for its high catalytic performance.  相似文献   

3.
Lei Ni  Ling-Ping Zhou  Kiyoto Matsuishi 《Carbon》2009,47(13):3054-5387
The role of catalyst components in catalysts containing molybdenum, Mo/M/MgO (MNi, Co, and Fe), as well as Mo-free catalysts, M/MgO (MNi, Co, and Fe), for carbon nanotube (CNT) synthesis have been investigated by TEM, XRD, and Raman spectroscopy. CNT synthesis by the catalytic decomposition of CH4 over M/MgO catalysts can proceed at reaction temperatures higher than the decomposition temperature of the metal carbides (Ni3C, Co2C, and Fe3C), which indicates that carbon in the CNT originates from the graphitic carbon formed on the catalyst surface by the decomposition of metal carbides. For all catalysts containing Mo, thin CNT formation starts at an identical temperature of 923 K, corresponding to the decomposition temperature of MoC1−x into Mo2C. The significant effect of the addition of Mo is concerned with the formation of Mo2C in a catalyst particle during CNT synthesis at high reaction temperatures. The presence of a stable Mo2C phase leads to the formation of thin CNT with better crystallinity at high reaction temperatures. The role of Ni, Co, and Fe in the Mo/M/MgO catalysts is ascribed to the dissociation of CH4.  相似文献   

4.
The structure and morphology of carbon species generated under dry reforming of methane (DRM) at 650 and 800°C on ‘bare’ and ‘K-doped’ Ni/MgO catalysts have been comparatively investigated by Transmission Electron Microscopy (TEM) analyses of ‘used’ samples. K-addition (Kat/Niat, 0.125) strongly improves the resistance of the Ni/MgO catalyst to coking and sintering phenomena at any temperature. At 650°C, an extensive formation of filamentous (whisker carbon) carbon species on bare Ni/MgO catalyst causes the detachment of a large number of Ni particles from the support with a consequent destruction of the structure and remarkable sintering phenomena of the active phase. Considerably lower amounts of carbon deposits with a shell-like (encapsulating carbon) morphology, forming at 800°C on both catalysts, point to the Bouduard reaction as the main route of carbon deposition on Ni-based catalysts during DRM. The electronic effect induced by potassium on the active phase of the Ni/MgO system, timely monitored by a rise in Eapp of DRM from 50 to 70 kJ/mol, markedly hinders the rate of coking also affecting the morphology of carbon whiskers, by inhibiting the processes of C diffusion and nucleation across Ni particles under steady-state conditions.  相似文献   

5.
Mesoporous copper–cerium–oxygen hybrid nanostructures were prepared by one-pot cetyltrimethylammonium bromide surfactant-assisted method, and were characterized by thermogravimetry, X-ray diffraction, transmission electron microscopy, nitrogen adsorption–desorption, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Low temperature carbon monoxide oxidation was used as probe reaction to investigate the application of the prepared mesoporous copper–cerium–oxygen hybrid nanostructures in catalysis. The product calcined at 400 °C, with disordered wormlike mesoporous structure, high specific surface area (SSA) of 117.4 m2/g and small catalyst particle size of 8.3 nm, shows high catalytic activity with the 100 % CO conversion at 110 °C, indicating its potential application in catalysis. Catalytic activity results from the samples calcinied at different temperature suggested that high SSA, small catalyst particle size, finely dispersed CuO species and synergistic effect between CuO and CeO2 were responsible for the high catalytic activity of the catalysts.  相似文献   

6.
The catalytic performances of 12 wt.% Co/MgO catalyst pre-calcined at 873 K and of Ni catalysts for the steam reforming of naphthalene were investigated. The results of characterizations (TPR, XRD, and CO adsorption) for Ni catalysts showed that Ni metal particles were formed over the catalysts pre-calcined at 873 K with high Ni loading via reduction of NiO–MgO phases. A few Ni metal particles were obtained over the catalysts pre-calcined at 1173 K with all Ni loading values.The catalytic performance data showed that Co/MgO catalyst had higher activity (conv., 23%, 3 h) than any kinds of Ni/MgO catalysts tested in this study, under lower steam/carbon mole ratio (0.6) and higher concentration of fed naphthalene (3.5 mol%) than those used in the other works. The steam reforming of naphthalene proceeded when there was a stoichiometric ratio between the carbon atoms of naphthalene and H2O over Co catalyst; however, the activation of excess H2O happened over the Ni catalyst and this phenomenon can lead to having lower activity than Co catalyst. We concluded that these observations should be attributed to different catalytic performances between Co/MgO and Ni/MgO catalysts.  相似文献   

7.
Solid base catalytic materials such as ZrO2, MgO, ZrO2–MgO were prepared by either precipitation or impregnation method and characterized by, BET, CO2-TPD, PXRD, FT-IR, ICP-OES and TEM techniques. These catalysts were used for the synthesis of bis(indolyl)methanes by the condensation of different benzaldehydes with indole under solvent free conditions in shorter reaction times (20 min) at moderate temperature (70?°C). ZrO2/MgO catalyst was found to be highly basic and also resulted in high yields of bis(indolyl)methanes up to ~99%. This methodology offers several advantages such as high quality yields, easy procedure, mild and environmentally benign conditions. TEM studies revealed that ZrO2–MgO is mesoporous (25–45 nm) in nature. ZrO2–MgO catalysts were found to be economical, efficient and were found to be highly active, recyclable and reusable up to six reaction cycles without much loss of their activity.  相似文献   

8.
Steam reforming of ethanol, in simulated MCFC operative conditions was investigated over MgO supported Ni and Co catalysts. Ni/MgO catalysts exhibit higher activity and selectivity to H2 than Co/MgO catalysts because of the lower tendency of Ni to oxidize during reaction and to promote carbon monoxide methanation and ethanol decomposition reactions. Coke formation was strongly depressed due to the benefits gained through the use of basic carrier (MgO). Endurance tests carried out at low gas hourly space velocity (10,000 h−1) for 630 h showed that Ni/MgO catalyst possesses adequate characteristics to be proposed as an efficient catalytic system for the production of hydrogen for MCFC.  相似文献   

9.
Ni/K–MgO–ZrO2 catalysts for dry reforming of methane, with a range of Mg/Zr ratios and each containing about 10 wt% Ni, were prepared via Ni nitrate impregnation on MgO–ZrO2 supports synthesized by co-precipitation using K2CO3. It was found that a proportion of the potassium of the precipitant remained in the samples and improved the stability of the catalysts in the reaction. It was also shown that reduction of the catalysts at 1,023 K without calcination in air is necessary for stable and high activity; calcination in air at 1,073 K gives a deterioration of the catalytic properties, leading to rapid deactivation during the reaction. The order of the CH4 conversions of the reduced catalysts after 14 h on stream was as follows: Ni/K–Mg5Zr2 ~ Ni/K–Mg ≥ Ni/K–Mg2Zr5 ? Ni/K–Zr. A catalyst with 0.95 wt% K on MgO–ZrO2 with a Mg:Zr mole ratio of 5:2 showed the best resistance to deactivation. Experiments in a microbalance system showed that there was only negligible coke deposition on the surface of this sample. This behaviour was attributed to the presence of Ni nanoparticles with a diameter of less than 10 nm located on a MgO/NiO solid solution shell doped by K ions; this in turn covers a core of tetragonal ZrO2 and/or a MgO/ZrO2 solid solution. This conclusion was supported by EDS/TEM, XPS, XRD and H2 chemisorption measurements.  相似文献   

10.
This article describes the design and synthesis of MgO-modified Ni/CaO catalysts for sorption-enhanced steam reforming of ethanol. The results show that the introduction of MgO effectively increases the dispersion of CaO via forming MgCa(CO3)2 precursor. In the prepared MgO-modified Ni/CaO catalysts, metallic Ni exists around MgO supported on CaO. Both 100% ethanol conversion and >96% hydrogen purity can be stabilized in 10 cycles over the catalyst containing 20 wt% MgO. The interaction between metallic Ni and MgO enhances the sintering resistance of the catalyst. More importantly, reaction pathway studies have confirmed that the formation of CaCO3 hinders the activation of H2O on the Ni/CaO catalyst surface, and thus inhibits the conversion of the reaction intermediates including HCO* and CH x*. MgO can dissociate H2O to form hydroxyl groups which participate in the conversion of the reaction intermediates, thereby the MgO-modified Ni/CaO catalysts have better catalytic performance and carbon deposition resistance.  相似文献   

11.
Catalytic decomposition of methane (CDM) generates clean hydrogen and carbon nanomaterials. In this study, methane decomposition to hydrogen and carbon was investigated over Ni-, Co-, or Mn-doped Fe/MgO catalysts. The doping effect of different metals, varying from 3 to 10?wt%, was investigated. The catalytic performance of the obtained materials (noted 15%Fe+x%metal/MgO) revealed that the doping effect of Ni, Co, and Mn significantly improved the activity of Fe/MgO. Among the Ni-doped catalyst series, the 15%Fe+3%Ni/MgO catalyst performed better than the rest of the Ni catalysts. The 6%Co-containing catalyst remained the best in terms of activity in the Co-doped catalyst series and the 15%Fe+6%Mn/MgO solid showed better methane conversion for the Mn-doped series. Overall, 3%Ni-containing catalyst displayed the best catalytic performance among all Ni-, Co-, and Mn-doped catalysts. XRD, N2 sorption, and H2 temperature-programmed reduction (TPR), Laser–Raman spectroscopy, thermogravimetric analysis (TGA) under air, and temperature-programmed oxidation (TPO) were used for catalyst characterization. The results revealed that all the doped catalysts exhibited better metallic active site distribution than 15%Fe/MgO and proved that metal doping played a crucial role in catalytic performance.  相似文献   

12.
Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2   总被引:1,自引:0,他引:1  
S. Tang  J. Lin  K. L. Tan 《Catalysis Letters》1998,51(3-4):169-175
Partial oxidation of methane to syngas at atmospheric pressure and 750°C was examined over Ni/MgO, Ni/CaO and Ni/CeO2 catalysts with nickel loading of 13 wt%. All catalysts had similar high conversion of methane and high selectivity to syngas, which nearly approached the values predicted by thermodynamic equilibrium. However, only Ni/MgO showed high resistance to carbon deposition under thermodynamically severe conditions (CH4/O2 = 2.5, a higher CH4 to O2 ratio than the stoichiometric ratio). Its catalytic activity remained stable during 100 h of reaction, with no detectable carbon deposition. The oxidation of carbon deposited from pure CH4 decomposition and from pure CO disproportionation was investigated by in situ TPO-MS study which showed that both were effectively inhibited over Ni/MgO. In addition, the catalysts were characterized by TPR, XRD and XPS. It was revealed that the excellent performance of Ni/MgO resulted from the formation of an ideal solid solution between NiO and MgO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A facile synthesis of the hierarchical Ni/MgO catalyst is reported, with extremely fine dispersion of Ni nanoparticles (NPs) and high surface oxygen mobility. The hierarchical Ni/MgO catalyst exhibits higher activity for CH4 formation than that prepared by the impregnation method. The enhanced activity and thermal stability of the hierarchical Ni/MgO catalyst is attributed to hierarchical MgO particles with a multilayer structure and high surface oxygen mobility. This induces better metal‐support interactions, high Ni dispersion to prevent Ni NPs sintering, and the high surface oxygen mobility provides a high resistance to carbon deposition. Compared to the impregnated Ni/MgO catalyst, the hierarchical Ni/MgO catalyst exhibits a better fluidization quality and a higher attrition‐resistance in a fluidized‐bed reactor. This approach to improve the catalytic activity by creation of hierarchical Ni/MgO particles is encouraging for the design of novel catalysts for synthetic natural gas production, especially from the perspective of matching catalysts with fluidized‐bed reactors. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2141–2152, 2017  相似文献   

14.
About 20–40 mol% Ni/ZrO2 catalysts doped with Ce and Sm were synthesized by an ultrasound-assisted method and characterized by a number of physico-chemical methods (XRD, HR TEM, BET, XPS). It was demonstrated that the synthesized catalysts had a mesoporous structure, where ca. 10 nm size Ni nanoparticles were incorporated into the rare earth metal modified tetragonal zirconium oxide. The Ni particles formed during the reduction treatment could support the porous structure in the supports, and thus the porous properties of the catalysts were related to the Ni-loading. The maximum porous volume and size were obtained for the catalyst with a 30 mol% Ni loading, which coincidentally exhibited the highest catalytic activity for the methanation of CO2. After an oxidation–reduction pretreatment, the catalytic activity could be further improved. The increase in the catalytic activity was attributed to the formation of additional active centers on the catalysts’ surface.  相似文献   

15.
Mesoporous Co/KIT-6 and Co/SiO2 catalysts were prepared via hydrogen reduction and were subsequently used in CO2 catalytic hydrogenation to produce methane. The properties of the prepared Co/KIT-6 catalyst were investigated by low-angle X-ray diffraction, Brunauer-Emmett-Teller analysis, and transmission electron microscopy. The results indicate that the synthesized Co/KIT-6 catalyst has mesoporous structures with well-dispersed Co species, as well as higher CO2 catalytic hydrogenation activities than that of the Co/SiO2 catalyst. The Co/KIT-6 catalyst has a large specific surface area (368.9 m2 · g?1) and a highly ordered bicontinuous mesoporous structure. This catalyst exhibits excellent CO2 catalytic hydrogenation activity and methane product selectivity; the CO2 conversion and methane selectivity of the Co/KIT-6 catalyst at 280°C are 48.9% and 100%, respectively. The highly ordered, bicontinuous mesoporous structure of the Co/KIT-6 catalyst improves selectivity for the methane product.  相似文献   

16.
Catalytic decomposition of methane is a potential alternative route for the production of hydrogen and nanocarbonaceous materials from natural gas and other hydrocarbon feedstocks. In the present paper, we report the results of characterization and catalytic behaviour during the methane decomposition reaction of a spinel-like Ni–Mg–Al catalyst prepared by coprecipitation. The influence of reaction temperature and feed composition on carbon content, carbon formation rate and carbon morphology has also been studied. The main consequence of MgO addition to the support is the increase in the activity and stability of the Ni–Al catalysts. The better performance of Ni–Mg–Al catalysts is due to the higher interaction generated between Ni particles and the support in this catalyst, which prevents the formation of large metallic particles. The carbonaceous products are carbon nanofibres (diameters ~10–35 nm) and amorphous carbon, which causes the catalyst deactivation by encapsulation. The amount of each type of carbonaceous material depends on the different operating conditions used. The reduction–reaction–regeneration cycles lead to a remarkable sintering of the Ni crystallites due to weakening of the metal-support interaction.  相似文献   

17.
The enhanced production of light olefins from the catalytic cracking of FCC naphtha was investigated over a mesoporous ZSM-5 (Meso-Z) catalyst. The effects of acidity and pore structure on conversion, yields and selectivity to light olefins were studied in microactivity test (MAT) unit at 600 °C and different catalyst-to-naphtha (C/N) ratios. The catalytic performance of Meso-Z catalyst was compared with three conventional ZSM-5 catalysts having different SiO2/Al2O3 (Si/Al) ratios of 22 (Z-22), 27 (Z-27) and 150 (Z-150). The yields of propylene (16 wt%) and ethylene (10 wt%) were significantly higher for Meso-Z compared with the conventional ZSM-5 catalysts. Almost 90% of the olefins in the FCC naphtha feed were converted to lighter olefins, mostly propylene. The aromatics fraction in cracked naphtha almost doubled in all catalysts indicating some level of aromatization activity. The enhanced production of light olefins for Meso-Z is attributed to its small crystals that suppressed secondary and hydrogen transfer reactions and to its mesopores that offered easier transport and access to active sites.  相似文献   

18.
Methane partial oxidation (MPO) is considered as an alternative method to produce hydrogen because it is an exothermic reaction to afford a suitable H2/CO ratio of 2. However, carbon deposition on a catalyst is observed as a major cause of catalyst deactivation in MPO. In order to find suitable catalysts that prevent the carbon deposition, NiO-MgO/Ce0.75Zr0.25O2 (CZO) supported catalysts were prepared via the co-impregnation (C) and sequential incipient wetness impregnation (S) methods. The amount of Ni loading was fixed at 15 wt-% whereas the amount of MgO loading was varied from 5 to 15 wt-%. The results revealed that the addition of MgO shifted the light-off temperatures to higher temperatures. This is because the Ni surface was partially covered with MgO, and the strong interaction between NiO and NiMgO2 over CZO support led to the difficulty in reducing NiO to active Ni0 and thus less catalytic activity. However, among the catalysts tested, the 15Ni5Mg/CZO (S) catalyst exhibited the best catalytic stability for MPO after 18 h on stream at 750°C. Moreover, this catalyst had a better resistance to carbon deposition due to its high metallic Ni dispersion at high temperature.  相似文献   

19.
Ni/Al2O3 promoted catalysts with alkaline earth metal oxides (MgO, CaO, and BaO) were prepared and employed in dry reforming of methane (DRM). The catalysts were prepared by impregnation method and characterized by XRD, BET, TPR, TPO, and SEM techniques. The obtained results showed that the addition of MgO, CaO, and BaO as promoter decreased the surface area of catalysts (SBET). The catalysis results exhibited that adding alkaline earth promoters (MgO, CaO, and BaO) enhanced the catalytic activity and the highest activity was observed for the MgO promoted catalyst. TPR analysis showed that addition of MgO increased the reducibility of nickel catalyst and decreased the reduction temperature of NiO species. The TPO analysis revealed that addition of promoters decreased the amount of deposited coke; and among the studied promoters, MgO has the most promotional effect for suppressing the carbon formation. SEM analysis confirmed the formation of whisker type carbon over the spent catalysts.  相似文献   

20.
This paper presents a thermogravimetric analysis of catalytic methane decomposition using ordered mesoporous carbon nanorods (CMK-3) and ordered mesoporous carbide-derived carbon (DUT-19) as catalysts. X-ray diffraction and N2 physisorption analyses were performed for both fresh catalysts. Threshold temperatures for methane decomposition with DUT-19 and CMK-3 were estimated by three different methods found in literature. Carbon formation rate and carbon weight gain as a function of time at various temperatures and methane partial pressures were studied, and the kinetics of CMK-3 and DUT-19 as catalysts for methane decomposition were investigated. Arrhenius energy values of 187 kJ/mol for CMK-3 and 196 kJ/mol for DUT-19 with a reaction order of 0.5 were obtained for both catalysts. Results show that carbon deposition on the catalyst during the reaction lead to catalyst deactivation with significant surface modification. Scanning electron microscope studies of fresh and deactivated catalyst samples show the blocking of catalyst pores and the formation of agglomerates on the outer surface of the catalyst during the course of reaction. DUT-19 catalytically outperforms CMK-3 because of a lower threshold temperature, higher surface area, and higher pore volume. These results show that ordered mesoporous carbons are promising catalysts for methane decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号