共查询到20条相似文献,搜索用时 62 毫秒
1.
讨论了数据融合以多学科理论为基础,对按时序从各个信息源获得的数据在一定准则下加以自动分析、综合及判断,辅助人员完成所需要的估计和决策任务而进行的数据处理过程,并研究将数据融合技术应用于旋转机械故障诊断是可行的,而且有实际的应用价值和发展前景。 相似文献
2.
3.
4.
5.
司红波 《机械工程与自动化》2010,(5)
探讨了轴系振动分析系统在莱钢大型旋转机械中的应用,它能对机组运行中的轴系状态作出及时、有效的分析诊断,预防和消除故障,确保大型旋转机械的长周期、满负荷、稳定运行. 相似文献
6.
7.
旋转机械动态信号全息谱分析 总被引:6,自引:3,他引:6
研究了旋转机械的全息谱分析方法,实现了x和y两方向振动信息的融合。尤其是矢谱,在双通道FFT的基础上,可直接分析出单频椭圆的3个特征参数。把全息谱引入启停分析,可进行全息泊德图和全息瀑布图的分析。指出三维全息谱能用于旋转机械的动平衡,同时还介绍了全息谱分析软件的编制特点。 相似文献
8.
简要介绍了多传感器信息融合技术,并结合旋转机械振动故障诊断系统的要求与特点,探讨了信息融合技术用于故障诊断系统的基本层次结构。将信息融合的层次与故障诊断的功能相对应,提出了旋转机械振动故障诊断的信息融合模型。神经网络和证据理论相结合应用于故障诊断的新方法,提高了故障诊断系统的灵活性、效率和准确性。 相似文献
9.
旋转机械振动故障的信息炯诊断方法 总被引:2,自引:0,他引:2
目前绝大多数旋转机械的故障诊断方法都是依靠提取振动波形中的特征量来进行诊断.振动信号的分析往往是针对特定测点在某一瞬间采集的一段波形,因此它是状态的一种表现.如果产生故障,在某一状态下,振动波形不一定含有明显的故障信息,或故障信息被淹没在其他信息中.这时,依靠随机抽取的状态信息来进行故障诊断的方法就不能很好区分这些故障.但是,如果故障发生,一定会有所表现.一种故障在某一时刻或某一状态下引起的振动表现具有一定的分散性和随机性,但在一个过程中却有其规律性.以信息熵方法为基础,通过定义一个全新的判别指标--信息(火用)来描述振动过程的这种变化规律,从而提出一种基于过程的信息删故障诊断的新方法. 相似文献
10.
针对旋转机械振动检测中易造成的强度和谱结构误差,提出一种基于同源数据融合方式的虚拟探头检测方法.该方法将探头虚拟在任一谐波轨迹的最大强度方向,为提取各谐波的最大强度提供了理论依据和计算方案.该方法不仅可以方便地从截面检测拓展至三维空间,而且可以方便地推广到其他数据处理方法.构建了一种全新的基于数据的检测分析体系.对于提高旋转机械检测的精确度和故障诊断的准确率,具有重要的理论和工程意义. 相似文献
11.
Effective fault diagnosis of rotating machinery has always been an important issue in real industries. In the recent years, data-driven fault diagnosis methods such as neural networks have been receiving increasing attention due to their great merits of high diagnosis accuracy and easy implementation. However, it is mostly difficult to fully train a deep neural network since gradients in optimization may vanish or explode during back-propagation, which results in deterioration and noticeable variance in model performance. In fault diagnosis researches, larger data sequence of machinery vibration signal containing sufficient information is usually preferred and consequently, deep models with large capacity are generally adopted. In order to improve network training, a residual learning algorithm is proposed in this paper. The proposed architecture significantly improves the information flow throughout the network, which is well suited for processing machinery vibration signal with variable sequential length. Little prior expertise on fault diagnosis and signal processing is required, that facilitates industrial applications of the proposed method. Experiments on a popular rolling bearing dataset are implemented to validate the proposed method. The results of this study suggest that the proposed intelligent fault diagnosis method for rotating machinery offers a new and promising approach. 相似文献
12.
13.
针对北京燕山石化炼油厂某烟气轮机进行旋转机械远程故障诊断的研究,设计并开发了远程故障诊断系统原型.首先通过转子实验台模拟烟机的振动信号,以LabVIEW为平台对转子振动信号进行获取和分析;然后利用BP神经网络的方法对其进行故障诊断;最后通过B/S结构网络体系的构建,完成整个远程故障诊断原型系统的开发. 相似文献
14.
针对传统隐Markov模型(HMM)在机械故障诊断中存在的不足,即HMM过学习或溢出问题以及隐状态数需要事先假定,提出了基于无限隐马尔可夫模型(i HMM)的机械故障诊断方法。在提出的方法中,以谱峭度为特征提取,i HMM为识别器,并以最大似然估计来确定设备运转中出现的故障类型。同时,将提出的方法与传统的HMM故障识别方法进行了对比分析。实验结果表明,提出的方法是有效的,得到了非常满意的识别效果。提出的方法能够有效避免了HMM在建模初期遗留下的不足,可以自适应确定模型中隐藏状态数和模型数学结构,因此,提出的方法明显优于HMM故障识别方法。 相似文献
15.
This paper introduces the basic conception of information fusion and some fusion diagnosis methods commonly used nowadays in rotating machinery. From the thought of the information fusion, a new quantitative feature index monitoring and diagnosing the vibration fault of rotating machinery, which is called distance of information entropy, is put forward on the basis of the singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet energy spectrum entropy, and wavelet space feature entropy in time-frequency domain. The mathematic deduction suggests that the conception of distance of information entropy is accordant with the maximum subordination principle in the fuzzy theory. Through calculation it has been proved that this method can effectively distinguish different fault types. Then, the accuracy of rotor fault diagnosis can be improved through the curve chart of the distance of information entropy at multi-speed. 相似文献
16.
基于EMMD和BSS的单通道旋转机械故障诊断方法 总被引:1,自引:0,他引:1
针对在欠定的观测信号情况下,传统基于矩阵的盲源分离算法效果比较差的问题,提出一种基于极值域均值模式分解和盲源分离的单通道旋转机械信号故障特征提取方法,并应用于实际的故障诊断中.该方法先通过极值域均值模式分解法分解观测信号,把得到的固有模态函数和原观测信号一起组成新观测信号,从而实现了信号升维,使欠定问题转化为正定问题;然后,由奇异值分解和贝叶斯准则进行源数估计;最后,利用基于四阶累积量的特征矩阵联合对角化方法实现信号的盲分离.通过仿真,验证了该方法对旋转机械故障信号进行盲源分离的可行性.将提出的方法应用到齿轮和轴承系统的故障诊断中,进一步证明了该方法的有效性. 相似文献
17.
Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and non-stationary signals. It may decompose a complicated signal into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. The EMD method has attracted considerable attention and been widely applied to fault diagnosis of rotating machinery recently. However, it cannot reveal the signal characteristic information accurately because of the problem of mode mixing. To alleviate the mode mixing problem occurring in EMD, ensemble empirical mode decomposition (EEMD) is presented. With EEMD, the components with truly physical meaning can be extracted from the signal. Utilizing the advantage of EEMD, this paper proposes a new EEMD-based method for fault diagnosis of rotating machinery. First, a simulation signal is used to test the performance of the method based on EEMD. Then, the proposed method is applied to rub-impact fault diagnosis of a power generator and early rub-impact fault diagnosis of a heavy oil catalytic cracking machine set. Finally, by comparing its application results with those of the EMD method, the superiority of the proposed method based on EEMD is demonstrated in extracting fault characteristic information of rotating machinery. 相似文献
18.
19.
Hao Sun Ke Li Peng Chen Huaqing Wang Xueliang Ping Yi Cao 《Journal of Mechanical Science and Technology》2014,28(4):1189-1201
This study proposes a novel intelligent fault diagnosis method for rotating machinery using ant colony optimization (ACO) and possibility theory. The non-dimensional symptom parameters (NSPs) in the frequency domain are defined to reflect the features of the vibration signals measured in each state. A sensitive evaluation method for selecting good symptom parameters using principal component analysis (PCA) is proposed for detecting and distinguishing faults in rotating machinery. By using ACO clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. A fuzzy diagnosis method using sequential inference and possibility theory is also proposed, by which the conditions of the machinery can be identified sequentially. Lastly, the proposed method is compared with a conventional neural networks (NN) method. Practical examples of diagnosis for a V-belt driving equipment used in a centrifugal fan are provided to verify the effectiveness of the proposed method. The results verify that the faults that often occur in V-belt driving equipment, such as a pulley defect state, a belt defect state and a belt looseness state, are effectively identified by the proposed method, while these faults are difficult to detect using conventional NN. 相似文献