首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibria have been determined in the system CaO-Al2O3-H2O in the temperature range 100° to 1000°C. under water pressures of up to 3000 atmospheres. Only three hydrated phases are formed stably in the system: Ca(OH)2, 3CaO·Al2O3·6H2O, and 4CaO·3Al2O3-3H2O. Pressure-temperature curves delineating the equilibrium decomposition of each of these phases have been determined, and some ther-mochemical data have been deduced therefrom. It has been established that both the compounds CaO·Al2O3 and 3CaO·Al2O3 have a minimum temperature of stability which is above 1000°C. The relevance of the new data to some aspects of cement chemistry is discussed.  相似文献   

2.
It was first shown that the enamel slips which have the best suspnding characteristics contain equal amounts of Na2O and B2O3 and at least a moderate amount of NaF. The solubilities of mixtures of Na2O, NaF, and B2O3 were then investigated. The pH of these solutions and the primary crystalline phases separating on evaporation also were determined. The solubility data obtained at room temperature were summarized. When the solutions were evaporated, NaF was the first crystalline phase to separate from a large proportion of the mixtures investigated. It was concluded that the desirable handling characteristics of enamels whose mill liquors contain the proper proportion of Na2O, NaF, and B2O3 are not due to the formation of complex salts but to the following combination of properties: (1) the presence of salts with a moderate solubility which changes very slightly with temperature, (2) a moderate pH of about 10 in a probably well-buffered solution, (3) a relatively stable crystalline material, NaF, as a primary phase, and (4) a secondary phase which crystallizes slowly with relatively little shrinkage.  相似文献   

3.
4.
The phase relations were established experimentally for the system CaO-Al2O3-P2O5-H2O at 200°C and 1710 kPa. The quaternary compound, crandallite, CaAl3(PO4)2(OH)5· H2O, was found to be stable. Compatibility joins in the system were determined. The phase relations are presented on the isothermal-isobaric 90 wt% water plane and by projecting the primary fields of the liquidus surface onto the same plane.  相似文献   

5.
The phase diagram for the system Bi2O3-B2O3 has been determined experimentally. The melting point of Bi2O3 has been redetermined as 825° C with an estimated overall uncertainty of about ±3°C, and the molal heat of fusion of Bi2O3, calculated from the slope of the liquidus curve, is 2050 cal per mole. The system contains a body-centered cubic phase of approximate composition 12Bi2O3·B2O3, which melts incongruently at 632°C. Four congruently melting compounds exist in the system: 2Bi2O3· B2O3·5B2O3, Bi2O3·3B2O3, and Bi2O3·4B2O3, with melting points, respectively, of 675°, 722°, 708°, and 715°C. The Bi2O3·4B2O3 compound exhibits a sluggish transformation at 696°C. Compositions containing up to 97.5 wt% (85 mole %) Bi2O3 can be partly or totally quenched to glass. Indices of the quenched glasses are greater than 1.74. A region of liquid immiscibility extends at 709°C from almost pure B2O3 to 19.0 mole % Bi2O3. The extent of immiscibility theoretically calculated agrees with the experimentally determined value when 1.20 A is used for the ionic radius of Bi3+.  相似文献   

6.
Raman spectra were measured on B2O3-SiO2 glasses heat-treated at different temperatures and for different periods of time. It was found that the intensity ratio of the 810- and 475-cm−1 bands depended on the thermal history and composition of glass. The intensity vs heat-treatment temperature curve exhibited a maximum in the glass-transition temperature range. High-temperature Raman spectra were measured on 0.5B2O3-0.5SiO2 glass, both with increasing and decreasing temperature, between room temperature and 600°C. Above 300°C with increasing temperature, the intensity of the 810-cm−1 band decreased, whereas the intensity of the 475-cm−1 band increased. The changes reversed with decreasing temperature. The reversible change of the intensity of the two bands was interpreted as a reversible formation and decomposition of boroxy rings with temperature. The reaction becomes very sluggish below the glass transition so that the intensity ratio stayed constant below 300°C.  相似文献   

7.
Phase relationships in the system Li2O, B2O3-B2O3 were studied by the quenching method using twenty compositions. The crystalline phases encountered were (a) Li2O, B2O3, which melts congruently at 849°± 2°C., (b) Li2O.-2B2O3, which melts congruently at 917°± 2°C., (c) a new compound, 2Li2O-5B2O3, which melts incongruently at 856°± 2°C. and dissociates below 696°± 4°C., (d) Li2O.3B2O3, which melts incongruently at 834°± 4°C. and dissociates below 595°± 20°C., and (e) probably Li2O.4B2O3, which melts incongruently at 635°± 10°C. Reactions were sluggish at temperatures near 600°C., resulting in metastable relations. Hence phase equilibrium data relating to the lower stability limit of Li2O.3B2O3 and to the upper stability limit of Li2O.4B2O3 are considered to be tentative. Properties of the glasses and crystalline phases were studied. The refractive index of the glasses increased with the addition of Li2O up to 22%, but further additions up to 40% had no substantial effect. Glasses containing less than 30% Li2O were water soluble. Limited data on the density and thermal expansion of the glasses are presented. Li2OB2O3 was euhedral, lath-shaped, length-fast, biaxial negative (2V = 27°), with nα= 1.540, nβ= 1.612, nγ= 1.616. Li2O.2B2O3 was uniaxial negative, with ne= 1.560, nw= 1.605. Li2O.3B2O3 was biaxial negative (2V = 75° to 80°), with nα= 1.576, nβ= 1.602, nγ= 1.605. X-ray powder diffraction data for the five crystalline compounds are presented. Thermal expansion data for Li2O-B2O3 and Li2O.2B2O3 and limited data on the fluorescent properties of the compounds are given. X-ray diffraction data are also presented for Li2O.B2O3.4H2O and Li2O.-5B2O3. 10H2O. Li2O B2O3 was obtained by heating the first hydrate at 450° to 680° C. X-ray diffraction showed Li2O.4B2O3 and Li2O-3B2O3 to be the crystalline products obtained during heating the decahydrate at 500°C. and 600°C., respectively.  相似文献   

8.
The infrared absorption spectra of boron oxide glasses of low and high water content have been obtained in the 400- to 4000-cm.−1 region using thin films or fine powders dispersed in a liquid. A structural interpretation of the glass spectra has been made with the aid of the spectra of the closely related materials boric acid, orthorhombic metaboric acid, and partly deuterated boron oxide glass of high water content. It has been shown that the glass spectra are consistent with a random-network structure in which each boron is triangularly coordinated by three oxygens and that the presence of water leads to weak hydrogen bonding between oxygen atoms. No evidence for a substantial amount of tetrahedral coordination of boron by oxygen has been found in glasses of either low or high water content.  相似文献   

9.
Subsolidus equilibrium relations in a portion of the system Li2O-Fe2O3-Al2O3 in the temperature range 500° to 1400°C. have been determined near po2 = 0.21. Of particular interest in this system is the LiFe5O8-LiAl5O8 join, which shows complete solid solution above 1180°C. Below this temperature the solid solution exsolves into two spinel phases. At 600°C. approximately 15 mole % of each compound is soluble in the other. The high-temperature solid solution and the low-temperature exsolution dome extend into the ternary system from the 1:5 join. There is no appreciable crystalline solubility of LiFeO2 or of α-Fe2O3 in LiFe5O8. An attempt to confirm HFe5O8 as the correct formulation of the magnetic ferric oxide "γ-Fe2O3" was inconclusive, but in the absence of positive evidence, the retention of γ-Fe2O3 is recommended. All the metallic oxides of the Group IV elements increase the temperature of the monotropic conversion of -γ-Fe2O3 to α-Fe2O3. Silica and thoria have a greater effect on this conversion than does titania or zirconia.  相似文献   

10.
Phase equilibria were determined by standard quench methods in binary systems NIO-B2O3, the binary join Li2O.B2O3-NiO, and three other sections through the Li2O.B2O3-B2O3-NiO system. The only new compound observed was 2NiO.B2O3, which is stable from 1303° to 1480°C.  相似文献   

11.
Transparent glasses with densities greater than 8 g/mL, which are resistant to nuclear radiation damage and can serve as a host for rare-earth scintillators, are being developed. Glasses in the PbO–Bi2O3 system are known to have some of the highest densities yet reported. In this study, a thorough reexamination of these glasses has been performed to examine their optical-transmission windows and densities. The observed glass-forming range found in this work agrees well with that reported in the literature. A minimum of ≅ 10 mol% B2O3 was required in some cases to vitrify the compositions. Glasses were examined in which the PbO:Bi2O3 ratios ranged from 10:90 to 90:10 with a maximum total B2O3 content of ≅50 mol%. Glasses with higher B2O3 contents were not examined because of the rapidly decreasing density with increasing B2O3 content. The densities of the glasses ranged from a low of 6.0 g/mL to a high of 8.1 g/mL. The highest densities were observed for glasses with the greatest PbO content. Ultraviolet/visible and infrared spectra were recorded for these glasses. The transmission window lies between ≅430 and 3850 nm. A systematic increase in the cutoff wavelength was found to occur with an increase in the density. Water-absorption peaks were found in the infrared spectra at ≅3000 nm.  相似文献   

12.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

13.
The BN solubilities for B2O3, B2O3─SiO2, and B2O3─CaO systems have been measured mainly at 1823 K using a graphite crucible. The capability of the systems for nitrogen dissolution is compared with that of silicate systems in terms of nitride capacity. The dependence of nitrogen solubility in molten CaO containing 15 mol% of B2O3 on oxygen and nitrogen partial pressures is also investigated. It has been found that there are two mechanisms for nitrogen dissolution, namely as chemically bonded nitrogen and as physically dissolved nitrogen gas.  相似文献   

14.
15.
Binary Sb2O3-GeO2 glasses containing 45 mol% Sb2O3 and ternary Sb2O3-B2O3-GeO2 glasses containing 50 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined, and their colors and high-temperature viscosities were estimated visually. Small amounts of Sb2O3 (∼10 mol%) appear to perturb neither the Ge-O-Ge network nor those B-O-Ge networks with small B/Ge ratios (∼0.2). The B-O-Ge networks with larger B/Ge ratios (∼1.0) depolymerize in the presence of even less Sb2O3. Amounts of Sb2O3 >10 mol% appear to depolymerize the Ge-O-Ge and Ge-O-B networks progressively, possibly with the formation of chains. A structurally sensitive ir isofrequency contour technique developed for ternary glass systems was applied successfully to these Sb2O3-B2O3-GeO2 glasses. These contours can thus readily detect significant network depolymerization in the absence of the usual network modifiers.  相似文献   

16.
The reactions leading to the formation of crystalline Mg3(OH)5Cl·4H2O (phase 5), Mg2(OH)3,Cl·4H2O (phase 3), and Mg(OH)2 are compared for the systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O. The crystalline phases were determined by X-ray diffraction analysis. The concentration of the total magnesium and chloride in the solution and the pH of the solution determine the reaction product(s) in both systems. The influence of MgO reactivity and the molar ratio of reactants on the formation and stability of reaction products is discussed and the mechanism of the formation of phases 3 and 5 is explained. In the system MgO-MgCl2-H2O, MgO serves only to increase the concentration of total magnesium and the pH of the MgCl2 solution.  相似文献   

17.
Raman spectra were measured and analyzed for K2O-B2O3-CeO2 glasses containing 85% and 65% B2O3. Structural changes, e.g. in the coordination of boron (3 to 4) and germanium (4 to 6), were noted from the spectra when composition was varied.  相似文献   

18.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

19.
Interfacial reactions of pure, lead-, and zirconium-substituted BaTiO3 ceramics with PbOB2O3 glasses were studied, with an emphasis on the effect of glass composition. Microstructures were analyzed by scanning electron microscopy and electron-probe microanalysis aided with X-ray diffractometry of powder mixtures in the system BaTiO3PbOB2O3 heated at 850°C. The interfacial microstructures were divided into two types, depending on the glass composition. The first type was characterized by precipitates of TiO2 dispersed in the glass matrix. Extended heating or limited glass volume resulted in the formation of a continuous layer of BaTi(BO3)2. The second type of microstructure was characterized by a lead-rich perovskite phase, which developed at the glass/ceramic interfacial region. Growth kinetics for this phase denied the diffusion-controlled mechanism. The substitution of lead in BaTiO3 enhanced the penetration of glass into the ceramics along the grain boundaries and developed a coreshell structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号