首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
对可燃气体在室内泄漏扩散的模式进行了分析,对泄漏扩散的影响因素进行了系统阐述,建立了连续泄放源气体泄漏扩散的数学计算模型,并分别对室内有风和无风干扰的情况下的模型进行了简化.通过建立数值计算模型,采用通用的CFD软件PHOENICS对泄漏气体射流扩散后形成的速度场与浓度场进行了模拟计算,得出了泄漏气体在室内扩散分布的一般特征.结果表明,在分析可燃气体泄漏的危险性时,不仅应分析环境空间可燃气体的爆炸浓度范围,而且也要注意存在局部着火的可能性.  相似文献   

2.
障碍物对可燃气体泄漏扩散影响的数值模拟   总被引:1,自引:0,他引:1  
室内可燃气体泄漏容易引发危险事故,考虑障碍物对可燃气体泄漏扩散的影响,采用雷诺平均的N—S方程,k—ε湍流模型方程以及组分输运模型方程,通过改变泄漏速率、泄漏位置等参数对障碍物影响下可燃气体泄漏扩散进行了数值模拟。结果表明:障碍物存在阻碍了可燃气体的泄漏扩散,易使泄漏气体堆积,增大危险事故发生的可能性;不同泄漏速率下得到的浓度场分布相似;泄漏位置不同得到的危险区域不同,泄漏口与出口异侧、位置越低、距离障碍物距离越小,房间内发生危险事故的可能性越大。模拟结果可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

3.
室内可燃气体泄漏后与空气形成混合气体,容易引发爆燃或爆炸等危险事故,考虑到居民常使用燃气种类有天然气和液化石油气,采用雷诺平均的N-S方程,k—ε湍流模型以及组分输运模型方程,利用CFD技术对二者在有限空间内的泄漏扩散过程进行模拟研究,并与实验结果相比较,对比分析二者在不同泄漏工况下的泄漏扩散规律,结果表明:在泄漏的初始时刻,天然气和液化石油气形成的爆炸危险区域分别在房间上部和下部;液化石油气泄漏后很快就会在整个房间形成爆炸危险区域;通风口加速了泄漏天然气的排放,但房间内始终会存在一定厚度的爆炸危险区域。两种可燃气体在泄漏后形成的爆炸危险区域的分布差异,可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

4.
可燃气体泄漏扩散影响因素的数值分析   总被引:2,自引:1,他引:1  
采用雷诺平均的N-S方程,浮力修正的k-ε湍流模型以及组分输运模型,通过对不同位置室内可燃气体泄漏扩散的数值计算,得到了不同位置泄漏后的扩散特性,并对风速影响下的计算结果进行分析.结果表明:不同位置泄漏扩散形成的危险区域不同,无外界风力影响下,泄漏口与出口异侧且位置越高,房间内形成的爆炸区域越小;在外界风速的影响下,天然气容易在房间局部堆积,泄漏口位于顺风侧距离出口越近,且风速越大,房间内天然气扩散的越快,危险区域越小,对室内燃气管道系统的设计具有参考价值.  相似文献   

5.
室内燃气稳态泄漏数值模拟   总被引:1,自引:1,他引:0  
针对室内燃气在有限空间内泄漏不易扩散的特点, 分析风速对室内燃气泄漏扩散的影响, 建立了室内燃气管道泄漏的模型。采用计算流体力学软件, 对天然气、 液化石油气等两种室内燃气进行稳态泄漏过程的数值模拟。在风速分别为1m / s和3m / s , 泄漏时间分别为1 0、 6 0、 1 2 0s和2 4 0s的条件下, 考察了两种气体的体积分数。结果表明, 风速能够加速室内燃气的扩散; 泄漏的液化石油气更容易发生堆积, 形成爆炸危险区域。研究结果可为燃气泄漏事故的处理提供理论依据。  相似文献   

6.
燃气属于易燃易爆的危险性气体,当在室内有限空间发生泄漏时,会带来相当严重的后果。针对燃气泄漏扩散的特点,利用 Gambit建立室内燃气灶喷嘴处气体泄漏扩散的物理模型,并结合 CFD 流体动力学软件FLUENT模拟了燃气连续泄漏的扩散过程。对燃气在一定温度梯度、不同湿度条件下的扩散效果进行了对比,并监测了指定安装区域内不同安装点处的浓度,以期达到优化报警器安装位置的目的。结果表明,室内空气的相对湿度和安装位置是影响报警时间的关键因素;在相同安装点,当空气相对湿度增加15%时,报警时间延迟近6 s;在一定的空气相对湿度下,报警器距离泄漏口水平位置增加1 m,报警时间滞后4 s。  相似文献   

7.
以非平衡统计热力学和不可逆热力学为理论依据,建立温度梯度和湿度梯度耦合情况下扩散模型,结合受限空间内燃气泄漏扩散模型,建立多因素耦合作用下燃气泄漏扩散数学模型,并运用Matlab软件对室内燃气扩散过程进行了模拟分析。通过分析得到了温度和湿度梯度对燃气泄漏扩散的影响规律以及耦合作用下对燃气泄漏扩散的影响规律。研究结果将为燃气扩散规律的研究及事故发生时人员及时安全的进行撤离提供参考。  相似文献   

8.
通过燃气管道泄漏原因及燃气泄漏扩散影响因素的分析,针对燃气泄漏事故提出防范措施,对于减少火灾和爆炸事故危害具有重要的意义.本文分别从人为管理和设备设施方面总结了燃气管道系统泄漏的原因,通过建立燃气泄漏数学模型,对泄漏过程采用数值模拟分析的手段,分别从气体泄漏条件、气体种类和外界风场三个方面得出燃气泄漏后浓度场的变化规律,并结合泄漏扩散规律为预防燃气管道泄漏事故提出了消除爆炸必要条件、合理规范燃气设施和加强安全用气宣传等一些有效措施.  相似文献   

9.
基于高斯烟团叠加模型,建立了液氨储罐泄漏事故动态泄漏扩散模型,实现了对泄漏后氨气空间浓度场的动态分析,并根据浓度阈值进行了危害区域的划分。对某化工企业液氨储罐进行了事故模拟研究,得到了不同时刻危害区域划分情况,绘制了各级危害区域下风向、侧风向最远距离随时间的变化曲线,分析了危害区域增长变化情况。  相似文献   

10.
含硫天然气泄漏扩散的三维数值模拟   总被引:2,自引:2,他引:0  
研究燃气管道的泄漏,目的在于定性和定量地分析评价泄漏可能带来的危害。基于FLUENT软件,用GAMBIT建立三维泄漏模型,对含硫天然气管道泄漏及扩散进行了三维数值模拟。结果表明:硫化氢的存在增加燃气管道的泄漏危险区域;在自由扩散状态下,泄漏气体主要集中在泄漏口上部,且危险区域较小;当存在环境风时,泄漏危险区域向下风向下移,形成气体聚集区域,而上风向气体较少。可见,硫化氢和环境风的存在,使含硫天然气泄漏扩散的危险范围增大。  相似文献   

11.
随着我国天然气事业的发展,天然气管道规模也在不断扩大,与此同时也带来了安全上的隐患,城市天然气管道泄漏事故频繁发生,严重影响了城市居民的生命及财产安全。主要介绍了城市天然气管道泄漏数值仿真和数值模拟的基本理论,考虑泄漏过程中风场对泄漏的影响,分析了近地面处风场的变化,建立了埋地天然气管道泄漏模型。设定泄漏扩散发生在大气环境,选取CFD软件对网格进行划分并进行局部加密,进行了风场的稳态模拟。在风场达到稳态后,改变后处理边界条件,再对泄漏进行瞬态模拟,得出天然气泄漏扩散随时间的变化规律,定量分析了风速对泄漏扩散的影响。结果表明,建筑物对风场存在干扰,在泄漏过程中气体聚集在近地面及贴近建筑物周围,随着风速的增加,稳态扩散高度降低,但风场对水平扩散的影响较小,风速越大泄漏气体稀释效果越明显,所造成的危险区域越小。  相似文献   

12.
燃气连续性泄漏扩散规律的研究   总被引:1,自引:0,他引:1  
燃气的泄漏和扩散会对人员和环境造成极大的危害,为此,利用CFD方法对燃气连续性泄漏后的扩散现象进行了数值模拟.以丙烷为例,着重研究了障碍物宽度、燃气泄漏速度、风速、泄漏源与障碍物的距离等因素对燃气的扩散过程的影响.在大量数值模拟数据的基础上,经分析得到了燃气在扩散过程中遇障碍物阻挡时的分布规律.  相似文献   

13.
分析了天然气以及室内燃气事故的特点。研究了在室内有限空间内发生常规泄漏量的天然气泄漏时,采用导出的泄漏数学模型对胶管脱落造成的泄漏进行模拟,并得出其泄漏浓度随时间的变化规律。分析了点火时间对室内燃气事故的影响,提出了控制消除引火源、防止形成爆炸性混合物以及燃气设施的优化配置等相应预防措施。  相似文献   

14.
针对城镇埋地天然气管道泄漏扩散过程, 考虑多建筑物条件下不同组分、 不同浓度的气体扩散规律, 利用计算流体力学( CFD) 软件建立埋地管道泄漏扩散过程的三维物理模型, 将环境风场和泄漏速率以用户自定义函数形式引入边界条件中, 将模拟过程分为环境风场的稳态模拟和泄漏扩散的瞬态模拟两步, 又将泄漏扩散过程分为持续泄漏扩散和管道阀门关闭后的泄漏扩散两个阶段, 分析天然气的泄漏扩散规律。结果表明, 环境风场的稳态模拟是十分必要的, 建筑物附近流场存在三个低速区, 建筑物边缘存在较大的速度梯度; 天然气的持续泄漏扩散阶段呈现土壤层局限扩散、 上游低速区积聚、 气云浮升、H2S的沉积扩散等特征, 在阀门关闭后的阶段呈现气体扩散延续性、 气云由上而下消散等特点; 在本文工况条件下, H2S比CH4的扩散范围大, 消散时间晚, 危险性更大。  相似文献   

15.
对含硫天然气管道泄漏扩散进行模拟研究,在不同风速下对比分析了计算区域内障碍物形状、障碍物坡度对泄漏气体扩散过程的影响规律,并模拟了不同条件下H2S组分的安全区域。结果表明,障碍物的存在使泄漏气体在风力作用下堆积在障碍物的迎风面,障碍物的形状改变泄漏气体的运动路径。当障碍物为无坡度障碍物(建筑物)时,泄漏气体的扩散高度增大,且在水平方向的传输被阻碍;当障碍物为有坡度障碍物(山体)时,泄漏气体在水平方向的扩散距离增大,且在外界风力达到一定速度之后,泄漏气体绕过障碍物在背风区扩散时开始向下沉降,导致地面附近的安全区域范围减小。减小障碍物坡度,风速较小时对泄漏气体的扩散无影响,风速较大时泄漏气体将障碍物包围并在近地面处扩散;增大障碍物坡度,泄漏气体的扩散规律与无坡度障碍物(建筑物)存在时相似。模拟结果可为含硫天然气泄漏事故的处理提供参考。  相似文献   

16.
采用Fluent软件对油库罐区危险重质气体不同工况下的泄漏扩散过程进行了数值模拟研究。结果表明:卧式储罐垂直方向发生泄漏时,重气云团在地表附近重力沉降,气体浓度上升明显,整个罐区处于爆炸极限范围内,危险性较大;罐组边缘位置的储罐发生泄漏时,气体扩散速度快,但浓度较低;罐组中间位置的储罐发生泄漏时,气体扩散速度慢,容易达到爆炸浓度极限。当风速为0.95 m/s时,重质气体的扩散速度随着风速的增加而增加,气体浓度上升明显;当风速达到1.7 m/s时,气体浓度达到峰值,然后随着风速的继续增大,气体浓度慢慢降低。  相似文献   

17.
生物质气化过程的最终目标就是尽可能得到更多的高品质可燃气体。目前国内外缺乏对生物质气化过程参数优化问题的研究,在实际气化过程中燃气品质难以保证从而对燃用气设备产生了不利的影响,降低了燃气的利用价值。为此建立了一种能适应生物质(竹子)气化过程的支持向量机模型用于预测生物质气化气组分、气体热值及气体产率等气化指标。在此模型基础上,采用MOPSO算法寻找最优控制参数当量比ER和气化温度T,使得气体热值和气体产率两个目标折中并在一定程度上都趋近于最大化。通过生物质料竹子为例的计算验证,得到了满意的结果,即在保证气化指标的同时可得到一组最优的控制参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号