首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
研究了再生粗骨料替代率和锂渣掺量对再生粗骨料混凝土力学性能的影响。结果表明:未掺入锂渣时,随再生粗骨料替代率的增大,试件的强度均出现先提高后降低的趋势,当再生粗骨料替代率为30%时强度最高;当再生粗骨料替代率为0时,随锂渣掺量的增加,试件强度会不断的提高,当锂渣掺量为20%时强度达到最高;二者同时作用,当再生粗骨料替代率30%、锂渣掺量20%时,试件的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折强度较基准混凝土分别提高39.90%、48.22%、38.21%、12.19%。  相似文献   

2.
为了研究玄武岩纤维对RAC早期抗压强度的影响,对10组120个再生粗骨料替代率为50%的玄武岩纤维RAC进行试验研究,分析了不同掺量以及不同掺量长度的玄武岩纤维对RAC早期抗压强度的影响,研究结果表明:在RAC中掺入定量的纳米SiO_2后再掺入不同量不同长度的玄武岩纤维,随着玄武岩纤维掺量及掺量长度的增加其RAC立方体抗压强也在增加,其中玄武岩纤维掺量的变化对RAC抗压强度的影响比掺量长度的变化对RAC抗压强度的影响明显;玄武岩掺量一定时,随着玄武岩纤维掺量的长度的增加RAC抗压强度也随之增加;并且当玄武岩纤维掺量和掺量长度均增加时,随着龄期的增加,其后期28 d时的各掺量下玄武岩纤维掺量长度为18、14 mm两者的抗压强度越来越接近;各玄武岩纤维掺量下RAC不同龄期下的增长速度呈现先快后慢的大体趋势。通过对玄武岩纤维RAC进行研究,为工程实际运用提供借鉴意义。  相似文献   

3.
使用质量取代法研究粉煤灰和纳米SiO2单掺及复掺对再生混凝土(RAC)工作性能、抗压强度(7,28,90 d)、抗折强度(28 d)和劈裂抗拉强度(28 d)的影响。浇筑试样时,基于现有的搅拌方式,提出了新的两阶段搅拌法,先将再生粗骨料和纳米SiO2、附加水进行搅拌,使得部分纳米SiO2颗粒能够被再生粗骨料吸收,用于填补老砂浆孔隙和微裂缝。结果表明:随着纳米SiO2掺量增加,再生混凝土的坍落度逐渐减小,复掺粉煤灰能够减少纳米SiO2引起的坍落度损失; 粉煤灰掺量不变的情况下,再生混凝土抗压、抗折和劈裂抗拉强度随着纳米SiO2掺量的增加而增加; 复掺纳米SiO2和粉煤灰不但能够补偿再生混凝土由粉煤灰引起的早期强度降低,而且90 d龄期抗压强度明显高于2种材料单掺的再生混凝土; 纳米SiO2掺量(质量分数)为1%时,再生混凝土在90 d龄期的抗压强度相对再生混凝土提高了3.0 MPa; 复掺纳米SiO2和粉煤灰对再生混凝土的抗折强度、劈裂抗拉强度也有显著提升,S2F30的抗折强度相对于F30增加了24.17%,且劈裂抗拉强度高于2种材料单掺的再生混凝土,相对于F30提高了12.68%。  相似文献   

4.
钢渣复掺纳米SiO_2混凝土是一种新型环保型建筑材料,通过对加入不同钢渣掺量以及不同类型纳米SiO_2的混凝土抗压强度以及劈裂抗拉强度的研究,得出了钢渣复掺纳米SiO_2混凝土的力学性能的变化规律。试验结果表明:钢渣混凝土在钢渣掺量为20%时,其28 d抗压强度和劈裂抗拉强度达到最大值,分别是38.4 MPa和2.54 MPa;纳米SiO_2的加入能够有效提升钢渣混凝土的抗压强度和劈裂抗拉强度;3种纳米SiO_2对钢渣混凝土强度的提升作用由大到小顺序依次是:SP15SP30SP50;选用SP15型或SP30型纳米SiO_2时,钢渣复掺纳米SiO_2混凝土的抗压强度和劈裂抗拉强度在钢渣掺量为30%时达到最大值。  相似文献   

5.
为了研究矿物掺合料对再生混凝土早期抗压强度的影响,对16组256个粗骨料替代率为50%的双掺矿物料再生混凝土进行试验研究,分析了不同掺量下的粉煤灰和硅粉对再生混凝土早期抗压强度和抗压强度增长速率的影响,研究结果表明:单掺粉煤灰时,各龄期下抗压强度随掺量增加而减小;在粉煤灰和硅粉的掺量均为10%时,对于再生混凝土抗压强度提高较为明显,是普通再生混凝土的1.5倍。各矿物掺量下再生混凝土抗压强度增长速率整体呈先降后增的趋势,但粉煤灰掺量为30%再掺入硅粉掺量分别为15%、20%较其他掺量下的有所区别,在龄期14 d时呈现增长趋势。通过对混掺改性再生混凝土进行研究,为工程实际运用提供借鉴意义。  相似文献   

6.
因再生粗骨料来源的多途径,RAC(再生混凝土)棱柱体抗压强度将不同。为探索不同粗骨料来源RAC棱柱体抗压强度之间的差异性,选取最具典型代表性的旧房拆迁、高强桩基、市政工程、科学研究等四种不同粗骨料来源的废混凝土,经破碎加工成四种再生粗骨料,分别选取25%、50%、75%和100%四种取代率,同时掺入粉煤灰、硅微粉两种矿物掺合料,采用正交试验法,配置成四种不同粗骨料来源的RAC,测其棱柱体抗压强度,经比较与分析,得到再生粗骨料取代率和矿物掺合料是影响RAC棱柱体抗压强度的两个重要因素,再生粗骨料来源对RAC轴心抗压强度的影响不显著。  相似文献   

7.
在轻骨料混凝土中掺入钢纤维,配制钢纤维轻骨料混凝土。采用四因素、三水平的正交试验设计方法,研究了钢纤维掺量、粗骨料类型和粉煤灰替代率三种不同试验因素对轻骨料混凝土抗压强度、劈裂抗拉强度和抗冲击性能的影响。研究结果表明:粉煤灰替代率是影响轻骨料混凝土抗压强度的主要因素;粉煤灰替代率和钢纤维掺量是影响轻骨料混凝土劈裂抗拉强度的主要因素;钢纤维掺量变化、粗骨料类型和粉煤灰替代率三种因素对轻骨料混凝土抗初裂冲击次数影响不显著;钢纤维掺量变化是影响轻骨料混凝土抗终裂冲击次数的主要因素。  相似文献   

8.
研究了玄武岩纤维对再生骨料混凝土(RAC)力学性能的影响,对玄武岩纤维掺量为0、0.3%、0.6%、0.9%的再生混凝土进行了抗压、抗折、轴压及劈裂抗拉试验。拟合了不同纤维掺量的再生骨料混凝土的应力应变曲线,对玄武岩纤维再生骨料混凝土的抗折破坏进行了数值模拟。研究结果显示:玄武岩纤维可以有效改善RAC力学性能。相较未掺入纤维的RAC分析可得,抗压强度和劈裂抗拉强度在纤维掺量为0.3%时改善程度达到最大,分别为39.42、3.03 MPa,提高了13.44%、6.32%;抗折强度和轴心抗压强度在纤维掺量为0.6%时改善程度达到最大,分别为5.01、27.46 MPa,提高了10.35%、10.9%。但是过量纤维的掺入使得纤维分布不均匀,反而导致RAC力学性能降低。  相似文献   

9.
《Planning》2017,(1)
将不同掺量和不同长度的玄武岩纤维掺入设计强度为C30的天然浮石轻骨料混凝土中,分别对其3、7、14和28d4个龄期的立方体抗压强度和28d立方体劈裂抗拉强度进行研究。结果表明:对于轻骨料混凝土的抗压强度,当玄武岩纤维掺量为1.5kg/m3,玄武岩纤维长度为22mm时,玄武岩纤维轻骨料混凝土抗压强度提高最为显著;对于轻骨料混凝土的劈裂抗拉强度,当玄武岩纤维掺量为2kg/m3,长度为22mm时,玄武岩纤维轻骨料混凝土劈裂抗拉强度提高最为显著。  相似文献   

10.
通过力学性能试验及扫描电镜(SEM)从多尺度角度研究了再生粗骨料和废弃纤维的掺入对废弃纤维再生混凝土强度性能的影响情况。废弃纤维再生混凝土的抗压强度、劈裂抗拉强度在宏观上表现为随着再生骨料取代率的增加而减小,细观上表现为再生混凝土的多界面性、骨料和水泥基体的裂缝。废弃纤维体积掺入量对抗压强度影响不大,最优体积掺量为0.12%。而由于废弃纤维的加入,劈裂抗拉强度增长较多,细观上表现为废弃纤维的桥接作用。  相似文献   

11.
提出了粉煤灰和纳米SiO_2的复合改性方法,使用质量取代法,研究了粉煤灰和纳米SiO_2单掺及复掺对再生混凝土(RAC)抗氯离子渗透性能(84 d)的影响。结果表明,再生粗骨料全部取代天然粗骨料会显著降低抗氯离子渗透性能,84 d氯离子迁移系数和电通量分别提高了101.7%和89.1%;单掺SiO_2或粉煤灰时,随着取代率的提高抗氯离子渗透性能越好。复掺纳米SiO_2和粉煤灰能够产生叠加效应,显著提高RAC的抗氯离子渗透性能,其中复掺2%纳米SiO_2与30%粉煤灰时84 d氯离子迁移系数和电通量分别降低了72.3%和89.1%,甚至优于普通混凝土,并且相同掺量的纳米SiO_2对30%的粉煤灰改性效果更好。  相似文献   

12.
选取强度等级为C30,再生粗骨料取代率为0%、25%、50%、75%、100%,钢纤维摻量为0%、0.75%、1.5%的钢纤维再生混凝土进行了试验研究。结果表明:钢纤维对再生混凝土抗压及劈裂抗拉强度具有增强作用,但当钢纤维掺量达到某一数值后,其增强作用不再增大;抗压强度和劈裂抗拉强度随再生粗骨料取代率的增加整体呈现下降趋势。针对这一特点,建立了含钢纤维掺量和再生粗骨料取代率两个变量因素的抗压及劈裂抗拉强度计算模型以及二者换算模型。  相似文献   

13.
为了研究不同配合比的火山灰浆液改性再生粗骨料对混凝土性能的影响,通过正交试验对比分析了改性和未改性再生粗骨料的吸水率、表观密度和压碎指标,探讨了改性再生粗骨料对混凝土力学性能和抗氯盐侵蚀性能的影响。结果表明:与未改性再生粗骨料相比,改性再生粗骨料的吸水率和表观密度增大,压碎指标减小;在火山灰浆液中掺入30%复合掺合料后,随着复合掺合料中粉煤灰掺量的增加,再生混凝土的抗压强度降低,氯离子扩散系数增大;在火山灰浆液中掺入适量稻壳灰后,再生混凝土的抗压强度提高,氯离子扩散系数减小;在火山灰浆液中掺入适量分散剂后,再生混凝土的抗压强度降低,氯离子扩散系数增大;综合考虑再生混凝土的力学性能和抗氯盐侵蚀性能,火山灰浆液的最佳配合比为矿粉掺量30%、稻壳灰掺量3%、不掺粉煤灰和分散剂。  相似文献   

14.
《混凝土》2017,(4)
再生混凝土是一种资源节约型混凝土,再生粗骨料替代率的选择是决定再生混凝土力学性能的关键因素,试验通过设计5个不同的替代率,研究了再生骨料替代率对玻璃纤维再生混凝土力学性能的影响,并且在同一骨料替代率(50%)时研究了不同纤维掺量对再生混凝土保温性能的影响。结果表明:随着再生粗骨料替代率的增加,玻璃纤维再生混凝土的抗压强度和劈拉强度整体呈现下降趋势;不同取代率混凝土抗压强度均达到设计强度;再生粗骨料最优替代率为50%;混凝土的导热系数随玻璃纤维掺量的提高逐渐降低。  相似文献   

15.
钢纤维粉煤灰再生混凝土强度正交试验研究   总被引:4,自引:0,他引:4  
利用正交试验方法对钢纤维粉煤灰再生混凝土(以下简称再生混凝土)的强度性能进行了试验,考察了粉煤灰取代率(质量分数)、钢纤维掺量(体积分数)和再生粗骨料取代率(质量分数)对再生混凝土28d立方体抗压强度、劈裂抗拉强度和抗折强度的影响,并对试验结果进行了系统分析.结果表明:粉煤灰取代率对再生混凝土抗压与抗折强度的影响规律一致,但对其劈裂抗拉强度的影响规律却不相同;再生混凝土抗压强度、劈裂抗拉强度和抗折强度均随钢纤维掺量的增加而增大,但钢纤维掺量对劈裂抗拉和抗折强度的影响显著,对抗压强度的影响较小;再生粗骨料取代率对抗压强度、劈裂抗拉强度和抗折强度的影响规律基本一致,强度总体上随再生粗骨料取代率的增大而增大.要使再生混凝土强度得到提高,需降低粉煤灰的取代率,增大钢纤维掺量和再生粗骨料取代率.当粉煤灰取代率在30%以内、钢纤维掺量在18%以内时,粉煤灰取代率对再生混凝土抗压强度的影响最大,其次是再生粗骨料取代率,最次是钢纤维掺量;钢纤维掺量对再生混凝土劈裂抗拉强度和抗折强度的影响最大,其次是粉煤灰取代率,最次是再生粗骨料取代率.  相似文献   

16.
以50%再生粗骨料取代率为前提条件,将粉煤灰和矿渣粉分别以20%、30%、40%三种水泥置换率进行单掺,并在30%最优水泥置换率基础上,将二者以7∶3、3∶7、5∶5、6∶4、4∶6五种掺量比进行双掺,制作12组共288个100 mm立方体试块,在7、14、28、56 d四个养护龄期进行立方体抗压强度和劈裂抗拉强度试验,并与同龄期天然骨料自密实混凝土的强度作比较。试验结果表明:掺加矿物掺合料的再生粗骨料自密实混凝土强度略低于天然骨料自密实混凝土,但均能达到C30强度设计要求;矿渣粉可以显著提升混凝土早期强度,而粉煤灰对混凝土后期强度贡献值较大;在56 d龄期时,粉煤灰与矿渣粉以6∶4掺量比双掺的再生混凝土具有最为优秀的强度表现,基本达到天然骨料自密实混凝土强度值。  相似文献   

17.
《混凝土》2016,(4)
通过改变再生橡胶取代率(5%、10%、15%)、再生粗骨料取代率(50%、100%),对再生混凝土的破坏形态、立方体抗压强度、棱柱体抗压强度以及劈裂抗拉强度进行试验研究。试验结果表明:橡胶颗粒的掺入能提高再生混凝土的延性性能;随着再生橡胶掺量和再生粗骨料增加,混凝土的三个强度值都减小了。  相似文献   

18.
文章以3种粗骨料(粗骨料NA(natural aggregate)、普通再生粗骨料RA(recycled aggregate)、经掺入新材料(KA粉)的水泥浆液浸泡处理的再生粗骨料RA-KA)为研究对象,然后分别配制成混凝土NAC、RAC、RAC-KA,并测试在不同水胶比条件下(W/B=0.26与0.60)配置成的混凝土的力学性能,通过试验数据对比分析,26RAC-KA和26RAC对比发现,26RAC-KA的抗压强度、劈裂抗拉强度、断裂能和弹性模量都有所提高;60RAC-KA与60RAC对比发现,再生混凝土断裂能有较大提高,劈裂抗拉强度和弹性模量有小幅提高,但抗压强度略有下降。  相似文献   

19.
采用由建筑垃圾回收制成的再生粗骨料配置再生混凝土,研究由废弃混凝土回收的再生粗骨料不同取代掺量取代天然骨料对配置的再生混凝土性能影响,研究结果表明:随着再生粗骨料掺量的增加,RAC的抗压强度逐步降低,而碳化深度却逐步增加。当再生粗骨料掺量在50%以内时,其抗压强度及碳化深度与普通混凝土基本相同;当再生粗骨料掺量超过50%时,其抗压强度明显降低,碳化深度明显增大。  相似文献   

20.
采用标准试验方法,研究锂渣掺量(0、10%、20%、30%)及再生粗骨料取代率(30%、50%、70%、100%)对预拌掺锂渣再生混凝土立方体抗压—劈裂抗拉强度的影响规律。结果表明,掺入适量锂渣,尤其在后期,锂渣能够与水泥水化产物发生二次水化反应,对再生混凝土的强度有一定提升,但掺入过多,则会产生反作用。再生粗骨料最佳取代率在50%左右。若取代率过大,由于再生骨料存在自身缺陷,会对强度产生较大负影响。通过试验数据及回归分析,拟合出预拌掺锂渣再生混凝土劈裂抗拉强度与立方体抗压强度之间的关系式。经对比发现,计算值与试验结果契合度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号