首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
研究了钢渣粉掺量和养护方式对全固废混凝土抗压强度的影响,并通过SEM分析了掺钢渣胶凝材料水化产物微观形貌。研究结果表明,钢渣粉掺量对混凝土的抗压强度有较大影响,湿热养护能够有效激发钢渣的活性,提高胶凝材料早期强度。掺入20%钢渣粉,采用56℃湿热养护,可以制备出28d抗压强度达77.26MPa的混凝土。掺入钢渣粉对水化产物种类不会造成影响,在反应的中后期,体系中C-S-H凝胶和钙矾石的协同生成能够促进体系强度的增长。  相似文献   

2.
石灰石粉对高铝水泥性能的影响   总被引:2,自引:0,他引:2  
研究了石灰石粉对高铝水泥胶砂试件强度及孔结构的影响,分析了石灰石粉在高铝水泥水化过程中的作用.结果表明:高铝水泥胶砂试件抗折强度和抗压强度均随石灰石粉掺量(质量分数,下同)的增加呈现先升高后降低的趋势,各龄期(1,3,7,28d)胶砂试件的抗折强度与抗压强度均在石灰石粉掺量为3%时达到最大值;适量石灰石粉掺入高铝水泥中可生成单碳型水化碳铝酸钙和氢氧化铝,提高胶砂试件的密实度和强度;高铝水泥胶砂试件28d总孔隙率、大孔孔隙率和小孔孔隙率均随石灰石粉掺量的增加呈现先减小后增大的趋势,当石灰石粉掺量为3%时,胶砂试件各孔隙率均最小.  相似文献   

3.
针对铁尾矿活化效率低的问题,采用机械力-化学耦合活化工艺有效地激发铁尾矿粉潜在火山灰活性,为铁尾矿的大规模绿色资源化利用提供了基础。活化铁尾矿粉复合胶凝体系的实验结果表明,与纯水泥相比,活化铁尾矿粉混凝土具有高的坍落度和扩展度,混凝土工作性良好。CMIT活化铁尾矿粉-水泥体系中,反应初期活性降低,形成少量的水化产物,导致其孔隙率增大,抗压强度较低;随着反应的进行,大量的Ca(OH)2与水化凝胶的产生导致混凝土孔隙率降低,结构更加致密,其力学性能显著增加。  相似文献   

4.
实现高固废利用率及探明磷石膏激发的效果,主要研究了不同掺量磷石膏对磷渣-矿渣-水泥复合胶凝材料体系抗压强度的影响规律,并采用XRD、TG和SEM分析了体系的水化产物。结果表明:适量的磷石膏对磷渣-矿渣-水泥复合胶凝材料体系3 d的水化具有促进作用,当磷石膏掺量达到5%时,其含有的磷、氟等杂质会延缓胶凝材料的水化进程,导致3 d强度降低;磷石膏的掺入对体系7、28、90 d的强度都有一定激发效果,并且随着磷石膏的掺量增加,其主要水化产物C-S-H和钙矾石生成量逐渐增多,当磷石膏的掺量为5%时,水化至28 d后,体系中仍含有石膏,但当磷石膏掺量超过8%时,硬化浆体中残余大量石膏,反而会降低体系的机械强度。  相似文献   

5.
掺磷铝酸盐水泥的矿渣硅酸盐水泥水化行为   总被引:6,自引:0,他引:6  
主要研究了掺放磷铝酸盐特种水泥(PALC)后矿渣硅酸盐水泥(SC)的水化行为;通过混凝土实验,探讨了在磷铝酸盐水泥作用下混凝土的力学性能变化,掺磷铝酸盐水泥后的矿渣硅酸盐水泥28d胶砂抗压强度可提高8~14MPa,利用DSC,XRD,SEM,IR等分析手段,对该复合水泥水化浆体的结构、形貌进行研究,IR分析表明,复合水泥浆体水化产物相晶体结构的对称性较SC的高,由此可推测其稳定性增强,浆体耐久性好,SEM表明,水化浆体中的C-S-H凝胶交织成网络状,结构致密。  相似文献   

6.
研究了不同掺量石灰石粉和普通硅酸盐水泥对硫铝酸盐水泥凝结时间和力学性能的影响,采用水化热测试对水化进程进行了分析,同时,采用DTG对水化产物进行了综合热分析。结果表明:石灰石粉的掺入,缩短了终凝时间,降低了抗压强度;普通硅酸盐水泥的掺入,提高了硫铝酸盐水泥的水化速率,促进了C-S-H凝胶和AFt的生成;随着普通硅酸盐水泥掺量的增加,胶砂的早期强度逐渐降低,后期强度逐渐提高,当普通硅酸盐水泥掺量为40%时,5 h抗压强度最高,为35.9 MPa,当普通硅酸盐水泥掺量为80%时,28 d抗压强度最高,为94.5 MPa。  相似文献   

7.
磷渣用于混凝土工程的研究及应用   总被引:2,自引:0,他引:2  
所用磷渣主要由玻璃体组成。从表面积为2000cm^2/g左右的磨细磷渣粉可降低水泥砂浆的水化热。掺用胶材料总量15%的磷渣制得的混凝土,早期抗压强度比纯水泥混凝土稍低,28d基本一致,60d稍高。工程应用证明利用磷渣配制的混凝土完全满足要求。  相似文献   

8.
磷渣主要由玻璃体组成,其比表面积为2000cm^2/g左右的磨细磷渣粉,可降低水泥砂浆的水化热。掺用胶凝材料总量15%的磷渣制得的混凝土,其早期抗压强度比纯水泥混凝土稍低,28d基本一致,60d稍高。工程应用证明,利用磷渣配制的混凝土完全满足工程设计的要求。  相似文献   

9.
《混凝土》2017,(5)
对石灰石粉、粉煤灰、石灰石粉-粉煤灰水泥胶凝材料体系进行了胶砂强度试验,并采用XRD、DSC-TG和MIP微观测试技术。结果表明,相同掺量条件下,掺石灰石粉的胶砂强度低于掺粉煤灰的胶砂强度,尤其是在后期,表明粉煤灰的活性高于石灰石的活性;单掺石灰石粉、复掺石灰石粉和粉煤灰的水泥浆体水化产物成分基本相同,主要为Ca(OH)_2、水化硅酸钙和钙矾石;水化反应早期,粉煤灰参与二次水化反应程度较低,后期则有大量粉煤灰与Ca(OH)_2发生了二次水化反应,而石灰石灰石粉在水化后期也几乎没有参与二次水化反应;石灰石灰石粉掺量越大,水泥浆体平均孔径和孔隙率越高;石灰石粉在水化体系中主要起惰性填充作用。  相似文献   

10.
研究了蒸汽养护条件下纳米TiO2 (NT)对粉煤灰-水泥体系早期力学性能的影响,并探索了其影响机制.结果 表明:NT的掺入可显著提高粉煤灰-水泥体系的早期抗压强度,其最佳掺量为3%;NT的掺入显著提高了水泥熟料的水化程度及粉煤灰的二次水化程度,增加了水化硅酸钙(C-S-H)凝胶的聚合度;NT的掺入降低了粉煤灰-水泥体系...  相似文献   

11.
水泥-粉煤灰复合胶凝材料的水化性能研究   总被引:12,自引:1,他引:12  
通过测定不同龄期净浆的化学结合水量和抗压强度,探讨了低水胶比条件下粉煤灰细度、掺量对水泥-粉煤灰笔合胶凝材料水性能的影响,试验结果表明:粉煤灰掺量的增加虽然促进了水泥的早期水经,但仍然降低了硬化浆体中化学结合水总量,同时,随粉煤灰掺量的增加,硬化浆体的早期强度下降;粉煤灰细工的增加并没有提高水泥-粉煤灰复合胶凝材料的水化程度,而超细粉煤灰的密实填充和微休料效应对硬化浆体后期抗压强度的增加起到了重要的作用。  相似文献   

12.
C-S-H凝胶产物在抑制ASR中的作用   总被引:2,自引:1,他引:1  
用粉煤灰部分取代水泥制作砂浆试件,在模拟孔溶液碱度的碱液中养护,测定了不同龄期砂浆棒的膨胀率和Ca(OH)2含量的变化。试验用扫描电子显微镜(SEM)观察C-S-H凝胶的形貌和用能谱分析(EDAX)测定了C-S-H凝胶的化学组成。结果显示,粉煤灰的掺入对ASR有较好的抑制效果。粉煤灰主要是通过与Ca(OH)2及水泥熟料水化生成的高Ca/Si比的C-S-H凝胶发生二次火山灰反应,生成大量低Ca/Si比的C-S-H凝胶,提高了对孔溶液中Na^ 和K^ 的吸收,从而起到抑制ASR的作用。  相似文献   

13.
采用电石渣对Ⅲ级粉煤灰进行高温煅烧改性,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和纳米划痕仪对改性Ⅲ级粉煤灰的矿物组成和表面形貌进行表征,研究了改性Ⅲ级粉煤灰的水化性能,对比分析了未改性和改性Ⅲ级粉煤灰与水泥浆体的微界面形貌和力学性能.结果表明:改性Ⅲ级粉煤灰表面生成了水化活性较好的β-C2S,其水化生成的C-S-H凝胶改善了Ⅲ级粉煤灰颗粒与水泥浆体的微界面,减少了微界面区的孔隙,提高了微界面的力学性能.  相似文献   

14.
A study on the hydration rate of natural zeolite blended cement pastes   总被引:3,自引:0,他引:3  
Natural zeolite is a type of mineralogical material containing large quantities of reactive SiO2 and Al2O3. It is widely used in the cement industry in China as a cement blending material. Like other pozzolanic materials such as silica fume and fly ash, zeolite contributes to concrete strength mainly through the pozzolanic reaction with Ca(OH)2, Thus, the pozzolanic reactivity of this type of material in comparison with other pozzolans is of much interest. This paper presents experimental results on the compressive strength, degree of pozzolanic reaction, and porosity of zeolite modified cement pastes. These results are compared with those obtained from similar blended cement pastes prepared with silica fume and fly ash replacements. Based on the experimental results, it can be concluded that natural zeolite is a pozzolanic material, with a reactivity between that of silica fume and fly ash. Generally, in blended cement pastes with a lower water-to-cementitious materials ratio, the natural zeolite contributes more to the strength of the pastes. But in the pastes with a higher water to cementitious ratio and a lower cement replacement level it undergoes a higher degree of reaction.  相似文献   

15.
通过正交试验提出纳米超高强高流态混凝土的胶凝材料配合比设计参数,并研究了纳米SiO_2的掺入对传统掺硅灰、粉煤灰超高强水泥基胶凝材料强度及工作性能的影响。在保证水胶比不变的条件下,开展了混凝土配合比试验,并研究了纳米SiO_2对混凝土抗压强度的影响及其微观机理。结果表明:超高强高流态混凝土中胶凝材料最优比例为:纳米SiO_2:硅灰:粉煤灰:水泥=1:8:20:71;在胶凝材料用量为600~1 000kg/m~3范围内,随着其掺量的增加,混凝土流动度不断增加,抗压强度先增大后减小,当其掺量为800kg/m~3时,抗压强度最大。分析认为,纳米SiO_2、硅灰与粉煤灰形成的三元多尺度堆积体系能优化粉体材料在混凝土中的微集料密实填充效应,纳米SiO_2的二次水化反应也有效改善了硬化水泥石的微观结构,并优化其形态分布,进一步增大其强度。  相似文献   

16.
In the present work, silica nanoparticles (30-70nm) were supplemented into cement paste to study their influence on degree of hydration, porosity and formation of different type of calcium-silicate-hydrate (C-S-H) gel. As the hydration time proceeds, the degree of hydration reach to 76% in nano-modified cement paste whereas plain cement achieve up to 63% at 28 days. An influence of degree of hydration on the porosity was also determined. In plain cement paste, the capillary porosity at 1hr is ~48%, whereas in silica nanoparticles added cement is ~35 % only, it revealed that silica nanoparticles refines the pore structure due to accelerated hydration mechanism leading to denser microstructure. Similarly, increasing gel porosity reveals the formation of more C-S-H gel. Furthermore, C-S-H gel of different Ca/Si ratio in hydrated cement paste was quantified using X-ray diffractometer and thermogravimetry. The results show that in presence of silica nanoparticles, ~24% C-S-H (Ca/Si<1.0) forms, leading to the formation of polymerised and compact C-S-H. In case of plain cement this type of C-S-H was completely absent at 28 days. These studies reveal that the hydration mechanism of the cement can be tuned with the incorporation of silica nanoparticles and thus, producing more durable cementitious materials.  相似文献   

17.
高碱度水泥基材料早期开裂敏感性研究   总被引:4,自引:0,他引:4  
选用粉煤灰、减缩剂和减水剂,采用五路裂缝测定仪和非接触式电阻率测定仪,分别测试了相同水灰比、不同碱类型的水泥砂浆在干燥条件下约束收缩开裂的初始时间与水泥浆体早期水化24h内的电阻率变化,并测定了水泥砂浆在干燥环境下的抗压、抗折强度.结果表明:碱度增加会加速水泥的早期水化硬化以及微结构的形成与发展;Na^ 提高水泥砂浆早期强度、增加约束收缩开裂敏感性的作用要比K^ 的明显,尤其在低水灰比、掺减水剂时其影响更为明显;粉煤灰和减缩荆可延缓水泥(尤其是高碱度的水泥基材料)的早期水化硬化,降低水泥砂浆强度的发展,推迟初始开裂时间.  相似文献   

18.
本文研究了粉煤灰和磨细矿渣对大体积承台混凝土抗压强度、水化热、收缩率的影响。试验结果表明:在水泥掺量一定时,随矿渣粉掺量的增加水化放热量、最大放热速率和干缩率均增大;水泥用量为200kg/m^3、粉煤灰为140kg/m^3、矿渣粉为50kg/m^3时,混凝土水化热较小、干缩率较小;SEM形貌图表明,粉煤灰和磨细矿渣的综合效应,使火山灰反应更加充分,Ca(OH)2含量降低,在水泥用量200kg/m^3时,混凝土28天结构致密。  相似文献   

19.
在粉煤灰加气混凝土生产中,应用外加剂和活性粉煤灰技术可以生产超高强加气混凝土,其抗压强度为8.0~10.0MPa,而密度仅为800kg/m3,适用于砌体结构的承重墙体。本文表明:超高强度机理是以加速反应初始时期钙硅水化热反应和从CSH(B)到托勃莫莱石的相转化,增加托勃莫莱石数量和改善加气混凝土的气孔结构。  相似文献   

20.
粉煤灰对水泥浆体化学收缩的影响   总被引:12,自引:1,他引:12  
水泥水化反应引起的化学收缩会引起砂浆及混凝土的体积变化,可能会导致收缩裂缝的产生。粉煤灰的掺入在一定程度上可减少化学收缩。本文通过一些试验研究所得数据论证了随粉煤灰掺量的增多,化学收缩随之减小,而随细度增加,水泥浆体化学收缩随之略有增大。并通过强度检测验证了测定的化学收缩可间接反映水泥的水化程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号