首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中国先进研究堆堆芯流量分配计算   总被引:2,自引:0,他引:2  
针对中国先进研究堆(CARR)正常运行强迫循环工况和自然循环工况下堆芯内冷却剂流动方向相反的特点,开发了堆芯流量分配计算程序。程序针对这两种运行工况进行了全堆芯的数值模拟,得出堆芯流量分配计算结果和非对称冷却条件下板状燃料元件的温度场。计算发现两种工况下堆芯内各通道的流量份额变化不大,表明流量分配主要取决于通道几何形状和尺寸,基本可以忽略功率分布不均的影响。  相似文献   

2.
以中国百万千瓦级超临界水冷堆(CSR1000)堆芯为研究对象,建立热工水力计算模型,计算出冷却剂和慢化剂温度分布、堆芯功率分布、燃料组件出口压力及流量分配等参数。计算结果表明,适当增加堆芯内部燃料组件流量比例,可以有利于径向功率展平,内外燃料组件通道出口压降,呈现"N"型变化,增大内部燃料组件的堆芯入口功率,内部组件内的流量分配也将减少,而外部燃料组件通道中的流量将增加,适当调整堆芯入口流量初始分配比例,可以使各通道功率分布展平。  相似文献   

3.
环形燃料混合堆芯横向流动特性对原堆芯的热工安全具有重要影响。本文基于计算流体力学(CFD)方法建立了3×3环形燃料混合堆芯,通过计算混合堆芯的速度场、局部阻力特性与各组件的出入口流量守恒性,对环形燃料与原堆芯燃料之间的横向流动进行了评价。结果表明,当环形燃料与原堆芯燃料轴向各处阻力一致时,原堆芯燃料出入口冷却剂流量相对偏差小于0.8%,环形燃料出入口冷却剂流量相对偏差小于1.8%,混合堆芯各格架段无显著横向流动。  相似文献   

4.
压水反应堆各个环路中的冷却剂在下腔室发生剧烈湍流交混,下腔室腔体内产生大量涡流,会导致堆芯燃料组件入口流量随机震荡,引发堆芯瞬态流动不稳定性,可能影响到反应堆热工、结构安全或传热性能。本文对反应堆内燃料组件区域流动特性开展研究,通过水力学试验手段获得反应堆堆芯在多种运行工况下,下腔室安装流量分配裙和不安装流量分配裙时的堆芯燃料组件入口流量脉动数据,试验结果表明,流量分配裙对下腔室涡流的抑制效果明显,在碎涡整流作用下,堆芯流量脉动明显降低;随着运行环路数的减少,下腔室流场对称性降低,涡流增强,堆芯流量脉动明显增大;下腔室涡流还会对堆芯入口流量分配均匀度造成不利影响,流量脉动偏大区域对应的流量分配因子明显较小。  相似文献   

5.
板状燃料元件堆芯流量分配及不对称冷却计算研究   总被引:1,自引:0,他引:1  
通过选择合适的数学物理模型,应用Compaq Visual Fortran 6.O软件编制程序,对全堆芯流量分配和板状燃料元件的不对称冷却进行了耦合迭代求解.构造了3种流量分配和两种板状燃料元件不对称冷却的迭代方法,以一个组件为计算对象,对这几种方法作了计算对比.计算表明:堆芯结构和功率分布对流量分配都有影响,但是主要起作用的还是堆芯结构;不对称冷却将显著的影响到板状燃料元件的温度场和功率分配.  相似文献   

6.
为建立低温供热堆热工水力系统的计算流体力学(CFD)仿真模型,针对供热堆堆芯燃料组件结构复杂的特点,采用多孔介质模型对堆芯环形燃料组件进行简化建模,多孔介质的孔隙率、渗透率以及惯性阻力系数通过对1组环形燃料组件精细化CFD模拟结果,采用多孔模型进行拟合得到。典型运行工况的计算结果表明:针对复杂几何采用多孔介质模型简化能大幅提高计算的经济性,多孔介质模型能正确反映参数整体分布趋势,堆芯入口最大流量分配不均匀系数为1.07。本文研究结果对基于环形燃料组件的低温供热堆中热工水力安全设计具有参考价值。  相似文献   

7.
小型压水堆压力容器内部三维流场计算   总被引:2,自引:2,他引:0       下载免费PDF全文
反应堆安全分析过程中,获得反应堆压力容器内部准确的流场至关重要。以小型压水堆为研究对象,运用计算流体力学(CFD)方法对反应堆压力容器内部流场进行计算分析,获得燃料组件流量分配和下封头混合特性。结果表明:两泵高速对称入口条件下,燃料组件流量分配系数最大值为1.032,最小值为0.934,且流量整体分布呈现"中间大、边缘小"的特点;一泵高速非对称入口条件下,下封头流动漩涡增强,燃料组件流量分配的不均性增大;下封头混合特性计算得到堆芯入口冷却剂流量混合因子最小值为0.022,下封头冷却剂混合能力不足。  相似文献   

8.
研究基于Cobra-IV程序,开发了适用于超临界水冷堆燃料组件分析的子通道程序.针对超临界水冷堆慢谱双排组件,进行了稳态计算,获取了相关组件热工水力参数.在此基础上,针对单一通道进行了瞬态计算,分析了燃料棒线功率变化和冷却剂流量变化条件下,超临界水冷堆燃料组件的流动和传热的动态响应,为超临界水冷堆组件的优化设计提供了参考.  相似文献   

9.
超临界水冷堆堆芯简化模型流量分配研究   总被引:4,自引:1,他引:3  
选取超临界水冷堆(SCWR)燃料组件作为研究对象,在平均孔口尺寸条件下,对堆芯功率分布进行模拟,建立了热工水力计算模型并进行了程序的开发,计算出了各个并联通道内的冷却剂流量以及相关参数分布.结果表明,平均孔口尺寸条件得到的各组群燃料通道轴向密度分布、堆芯功率分布存在较大的不均匀性,致使流量分配存在较大的差异;通过增大高功率组群的孔板尺寸即可得到较为合理的热工水力参数分布.  相似文献   

10.
董建华  汪俊  郭娟娟  张朔婷 《核技术》2021,44(12):78-86
棱柱式高温气冷堆的堆芯由燃料组件砖块分层、分区垒砌组成,考虑到加工误差以及结构装配,组件之间需要保证一定尺寸的间隙,形成的间隙流道将分流一部分堆芯冷却剂流量,简称间隙旁流。间隙旁流是堆芯结构以及堆内构件设计需要分析的重要因素,为了研究其对于反应堆热工流体性能的影响,采用商用计算流体力学(Computational Fluid Dynamics,CFD)程序ANSYS CFX针对MHTGR-350(Modular High-Temperature Gas Reactor 350 MWt)堆型堆芯活性区内流动、传热的复杂现象开展三维数值模拟,通过建立组件砖块、燃料孔道、冷却剂通道以及间隙流道的详细模型,计算得到区域内的流量分配以及温度分布情况。选取关键参数开展敏感性分析,结果显示:进入狭长间隙流道的冷却剂流量主要由堆芯的结构布置以及间隙的尺寸大小决定,间隙越大、旁流占比越大,冷却效率越差,燃料的局部温度越高。同时,在反应堆运行寿期内,间隙尺寸将随着组件形变而发生变化,引起堆内温度分布以及出口温度发生波动,间隙越大引起的波动幅度也越大,不利于堆芯运行的安全性和稳定性。  相似文献   

11.
12.
加速器驱动洁净能系统中的燃耗行为分析   总被引:1,自引:0,他引:1  
研究了加速器驱动洁净核能系统(ADS)次临界反应堆内核素的演化。分析结果表明:ADS具有嬗变长寿命核废物的能力。从快堆和热堆的比较可知,ADS的快堆具有输出功率大、长寿命超铀放射性废物的累积水平低、裂变产物对反应堆反应性和能量增益影响小等优点。这些优点在利用U-Pu燃料循环的次临界堆中十分明显。对于利用Th-U燃料循环的次临界堆,热堆和快堆都是可以工作的;而对于U-Pu燃料循环的系统,快堆则是较好的选择。  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Problem of the iodine method of purification of zirconium   总被引:1,自引:0,他引:1  
A method is proposed for the determination of the equilibrium constantsk and k' for the reactions Zr+2I2–ZrI4=0 and 2I–I2=0, which is based on the measurement of the amount of iodine or zirconium liberated in the decomposition of zirconium tetraiodide on a heated surface in the process of establishing equilibrium. The decomposition of the tetraiodide was carried out at 900–1600C on a tungsten filament. The temperature distribution between filament and vessel walls was neglected.The dependence of the sum of atomic and molecular iodine pressures on zirconium tetraiodide pressure was determined at 1430C, and on temperature for 50 mm Hg. The values of kk'2 35 (mm Hg)3 at 1430C and k0.07 mm Hg at 400C, found from the results, differ substantially from known thermodynamic data, but give good agreement between the authors' formula [1] and experimental results on the iodide process of zirconium purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号