首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以氢氧化钠和水玻璃为激发剂制备矿渣-钢渣复合胶凝材料,研究矿渣掺量、碱当量和水玻璃模数对复合胶凝材料抗压强度的影响,并采用XRD、SEM对硬化试样的显微形貌和水化产物组成进行了分析。结果表明:随矿渣掺量减少,抗压强度降低。随碱当量的增加,抗压强度先提高后降低,碱当量为11%时强度达到最高。随水玻璃模数的增大,抗压强度先提高后降低,当水玻璃模数为1.2时强度达到最高。水化产物主要为CaCO3、C-S-H凝胶、C-A-S-H凝胶、托贝莫来石及RO惰性相。  相似文献   

2.
以碱渣、矿渣、石灰为原料,分别以NaOH、水玻璃、Na_2CO_3为碱激发剂制备地聚合物材料,综合考察了水灰比、碱激发剂种类、矿渣掺量对碱渣-矿渣地聚合物强度的影响。结果表明:随着水灰比的增大,碱渣-矿渣地聚合物强度不断降低;Na_2CO_3对反应没有激发作用,反应产物无强度;碱渣掺量较大时,水玻璃激发效果优于NaOH,NaOH激发产物早期强度大,而水玻璃激发产物后期强度大。在水灰比为0.50,碱渣与矿渣的比例为3∶7,水玻璃作为激发剂时,制备的地聚合物材料7d强度可达到40MPa以上。  相似文献   

3.
分别以拜耳法赤泥、烧结法赤泥为原料,进行碱激发胶凝材料的制备研究,并对其制备碱激发胶凝材料的可行性进行了评价。研究结果表明,拜耳法赤泥的胶凝活性极低,不适宜用作碱激发胶凝材料的制备原料;烧结法赤泥因含有具有一定胶凝活性的β-硅酸二钙,因此可用作碱激发胶凝材料的制备原料。以烧结法赤泥和矿渣组成二元复合体系,以模数2.40的液体水玻璃为激发剂制备碱激发胶凝材料,在矿渣掺量30%、赤泥掺量70%的条件下,激发剂的最佳掺量为5.0%。所制备碱激发砂浆试样的3d、28d抗压强度可分别达到35.0 MPa、65.0 MPa以上。  相似文献   

4.
采用煅烧高铝煤矸石、矿渣,使用水玻璃进行激发试验。矿渣对早期强度起主要作用,煅烧高铝煤矸石对后期强度贡献较大。胶凝材料的抗压强度随水玻璃模数的减小而增大,随水玻璃掺量的增大而增大,随液胶比的减小而增大。水玻璃模数为1.049,矿渣:煅烧高铝煤矸石为4:6,激发剂掺量为22%,液胶比为0.35时,复合材料28天抗压强度达到了41.7MPa。  相似文献   

5.
《建材世界》2021,42(5)
将粒化高炉矿渣微粉(GGBS)掺入凝灰岩石粉(tuff)中,通过NaOH溶液和Na_2SiO_3溶液碱激发,制备碱激发凝灰岩胶凝材料。探究了GGBS掺量对碱激发凝灰岩胶凝材料凝结时间和力学性能的影响,并采用X射线衍射(XRD)等分析手段对样品进行微观表征,探究碱激发过程中凝灰岩石粉和GGBS的复合反应机理。结果表明:掺入GGBS可以缩短碱激发凝灰岩胶凝材料浆体的凝结时间;随着GGBS掺量的增大,碱激发凝灰岩胶凝材料的抗压强度呈现出先增大再减小的趋势,在GGBS掺量为20%时,制备的碱激发凝灰岩胶凝材料样品28 d抗压强度最高,达到73.33 MPa。微观分析表明,在碱激发剂作用下凝灰岩/矿粉复合体系发生了地质聚合反应和矿粉水化反应,生成了N-A-S-H凝胶和C-S-H凝胶共存的结构,从而提高了胶凝材料的强度。  相似文献   

6.
制备了掺玄武岩石粉的碱激发矿渣胶凝材料,研究了玄武岩石粉掺量、液固比、碱激发剂的固含量和模数对碱激发矿渣胶凝材料抗压强度的影响。结果表明:随着玄武岩石粉掺量的增加,碱激发矿渣胶凝材料的抗压强度呈下降趋势;碱激发剂的固含量由18.00%增大至35.58%时,所制材料的抗压强度呈提高趋势,但碱激发剂的固含量进一步提高至41.35%时,碱激发矿渣胶凝材料的抗压强度反而较低;碱激发剂的固含量为25.08%~35.58%、模数为1.50~1.00时,可制得强度较理想的玄武岩石粉-矿渣碱激发胶凝材料。  相似文献   

7.
研究了氢氧化钙、石膏、硫酸钠三种激发剂对钢渣-矿粉胶凝材料力学性能的影响,并结合XRD图谱分析了激发剂对钢渣-矿粉胶凝材料水化产物的影响机理。试验结果表明,三类激发剂中,硫酸钠能更好的激发钢渣-矿粉的活性,当硫酸钠的掺量为1.5%时,3d强度为18.0MPa,7d强度达到22.5MPa,28d强度达到25.8 MPa。XRD分析表明,掺入硫酸钠后,钢渣-矿粉胶凝材料的水化产物主要为C-S-H凝胶、棒柱状AFt晶体及少量的Ca(OH)2晶体,激发剂掺量的不同,水化产物数量不同,合适掺量的激发剂有助于激发体系的水化活性,提高体系的力学性能。  相似文献   

8.
郑蕻陈  刘琳 《建筑材料学报》2023,26(11):1214-1219
系统研究了以NaOH、水玻璃以及NaOH复掺Na2CO3为激发剂,激发矿渣、粉煤灰、矿渣/粉煤灰和矿渣/水泥4种胶凝体系的凝结时间和7 d抗压强度变化规律,获得了凝结时间与掺量变化公式及早期抗压强度预测公式.结果表明:单一NaOH或水玻璃激发矿渣条件下,掺入少量粉煤灰、水泥对改善复掺体系凝结时间的效果不显著,并且均会降低早期抗压强度;采用NaOH/Na2CO3复合激发剂后,能够有效延长体系凝结时间,在一定程度上提高体系抗压强度.针对NaOH/Na2CO3复掺激发矿渣/水泥体系凝结时间和抗压强度出现“不增却减”的现象,深入讨论了掺NaOH/Na2CO3复合激发剂的作用机理.  相似文献   

9.
为了大规模消纳钢铁冶炼渣,实现其高附加值利用,激发钢渣潜在活性,在m(钢渣)∶m(矿渣)∶m(水泥)=36∶54∶10时,研究了Na2SO4和Na2SiO3两类常用激发剂单掺及复掺对钢渣-矿渣复合胶凝材料性能的影响。结果表明,Na2SiO3和Na2SO4复掺的激发效果要优于单掺,最佳复合激发剂掺量为3%Na2SiO3+1%Na2SO4。复掺激发剂时,钢渣-矿渣复合胶凝体系除了出现新相黝帘石外,其它水化产物种类基本相同,均为AFt、CH和无定形的C-(A)-S-H凝胶,其中SO42-能够加速钢渣和矿渣玻璃体结构的解聚,而SiO32-水解形成H3SiO4-和OH-  相似文献   

10.
在激发剂的作用下,利用矿渣改性磷石膏(PG)制备磷石膏基胶凝材料(PGS),然后研究掺入钢渣和粉煤灰制备磷石膏复合材料的性能情况。结果表明:当激发剂掺量在3%时,在20℃(湿度大于70%)养护下PGS固化体28d的抗压强度和抗折强度(41.9MPa和7.1MPa)分别较未掺激发剂的提高了47.3%和42.3%,28d软化系数为0.94;当钢渣比例在1:1时,磷石膏砂浆性能最佳,28d抗压强度和抗折强度分别为57.1MPa和4.8MPa;粉煤灰掺量在20%时,磷石膏砂浆抗压强度和抗折强度分别为22.1MPa和3.4MPa,吸水率和软化系数分别为4.9%和0.94,质量损失率、抗压强度损失率和抗折强度损失率分别为1.5%、4.5%和4.3%。  相似文献   

11.
分析了转炉钢渣的矿物组成和胶凝性能,研究了Na_2SO_4、CaCl_2、NaCl和海水对钢渣浆体和钢渣水泥浆体强度的影响。结果表明,钢渣粉3d的水化放热量仅为P·O 42.5水泥的7.5%,钢渣浆体7d和90d抗压强度只有0MPa和15.1MPa,所以钢渣粉自身水化能力很低,胶凝性很差。Na2SO_4和CaCl_2对于钢渣浆体有一定的激发效果,掺0.9%Na_2SO_4时激发效果最好,浆体3d和90d抗压强度比不掺激发剂的空白组提高了19.1%和8.2%。对于钢渣水泥浆体,掺1.2%CaCl_2的浆体强度最高,浆体3d和90d抗压强度分别比空白组提高了53.6%和16.9%。NaCl和海水对钢渣浆体和钢渣水泥浆体3d强度有明显的激发作用,但会使90d强度出现较明显的倒缩。  相似文献   

12.
通过正交试验,研究复合激发剂三种组分掺量对无熟料矿渣粉煤灰胶凝材料抗压强度的影响,测试胶凝材料3d、7d和28d的抗压强度并分别进行极差分析。结果表明,JS激发剂对抗压强度活性激发最强,JL最弱;无熟料矿渣粉煤灰胶凝材料28d抗压强度达到44.47MPa;获得了最佳的复合激发剂掺量配方。  相似文献   

13.
研究了在碱激发方式下再生黏土砖粉的活性激发效果和机理,探究了活性激发后的再生黏土砖粉用于制备泡沫混凝土的可行性。结果表明:复合碱激发剂可以提高再生黏土砖粉-水泥胶凝材料的28 d抗压强度和活性指数,当复合碱激发剂掺量为3%时,试件的28 d抗压强度和活性指数分别为22.42 MPa和73.3%,激发效果最好;当采用复合碱激发剂时,胶凝材料体系的水化放热速率和水化放热总量低,水化反应时间长,试件的后期强度高;当复合碱激发剂掺量为3%、再生黏土砖粉掺量为40%、水胶比为0.50时,再生黏土砖粉泡沫混凝土的性能满足JG/T266—2011《泡沫混凝土》的要求。  相似文献   

14.
激发剂对钢渣胶凝材料性能的影响   总被引:1,自引:0,他引:1  
以钢渣、矿渣、水泥熟料为主要原料,并掺入少量激发剂,成功制备了高强、高钢渣掺量的钢渣胶凝材料.探讨了激发剂、熟料掺量、钢渣掺量对钢渣胶凝材料性能的影响,并通过SEM,XRD分析了激发剂对钢渣胶凝材料浆体水化产物及水泥石微观结构的作用.结果表明:激发剂显著提高了钢渣的活性,从而大幅度提高了钢渣胶凝材料的早期性能;掺加激发剂后,钢渣胶凝材料3 d抗压强度可增加119.7%;激发荆对钢渣胶凝材料浆体水化产物种类的影响不大;与硅酸盐水泥浆体相比,钢渣胶凝材料浆体中C-S-H凝胶和Aft晶体含量明显增多,Ca(OH)2晶体含量显著降低.  相似文献   

15.
《混凝土》2017,(10)
掺入一定比例及质量的复合激发剂,通过改变钢渣粉、矿渣粉及水泥等胶凝材料的比例,研究碱激发钢渣混凝土的力学性能及耐久性能,并采用XRD和扫描电镜等测试手段对其微结构进行分析。试验结果表明:在满足配置混凝土工作性能的前提下,钢渣掺量为40%、矿渣掺量为35%、硅灰掺量为5%、水泥掺量仅为20%,得到混凝土的强度等级可达C40,高于设计强度等级C30,且抗碳化性、抗冻性及抗硫酸盐侵蚀性等耐久性能优异;微观分析表明,此配合比混凝土的胶凝体系28 d水化产物结构致密,且孔隙较少,后期强度发展较好,胶凝体系与骨料之间结合性较好。  相似文献   

16.
碱种类和掺量对ACM抗压强度的影响   总被引:1,自引:0,他引:1  
分别用水玻璃(M=2.0)、NaOH和P.O42.5水泥等激发剂激发矿渣粉和粉煤灰等硅铝酸盐材料,制备碱-硅铝酸盐胶凝材料,来研究激发剂种类和掺量对碱-硅铝酸盐材料抗压强度的影响。结果表明在掺量相同的条件下,水玻璃的激活效果最好,水泥的激活效果最差,NaOH介于两者之间。水玻璃最佳用量为硅铝酸盐材料质量的7%;NaOH激发矿渣时的最佳用量为矿渣质量的8%,激发粉煤灰和矿渣的混合物时的最佳用量为硅铝酸盐材料质量的10%;以普通硅酸盐水泥作为碱激发剂,未能反应出明显的规律性。  相似文献   

17.
介绍了碱激发胶凝材料的制备技术和碱激发反应机理,总结了碱激发胶凝材料的工作性能、力学性能、耐久和耐高温特性。分析表明:激发剂的掺量和水玻璃模数是影响碱激发胶凝材料凝结时间和流动度的关键参数,凝结时间介于13~183min之间,终凝时间介于15~215min之间,流动度介于133~230mm之间,可通过改变激发剂的掺量和水玻璃模数使凝结时间和流动性满足不同要求;碱激发胶凝材料具有早强、高强的特点,28d抗压强度可达到60MPa以上,3d抗压强度可达到稳定强度的70%以上;碱激发胶凝材料高温下性能较稳定,在600~800℃的高温下抗压强度可达到常温状态下的60%以上;碱激发胶凝材料具有优异的抗冻融性能,其抗冻等级可达到F300以上;碱激发胶凝材料中由于没有极易遭受侵蚀的水化产物存在,故抗酸腐蚀能力强;碱激发胶凝材料由于孔结构致密,具有良好的抗渗性能。并针对碱激发胶凝材料优选配比和应用所需要解决的收缩、泛霜等问题,对未来研究的方向进行了展望。  相似文献   

18.
介绍了碱激发胶凝材料的制备技术和碱激发反应机理,总结了碱激发胶凝材料的工作性能、力学性能、耐久和耐高温特性。分析表明:激发剂的掺量和水玻璃模数是影响碱激发胶凝材料凝结时间和流动度的关键参数,凝结时间介于13~183 min之间,终凝时间介于15~215 min之间,流动度介于133~230 mm之间,可通过改变激发剂的掺量和水玻璃模数使凝结时间和流动性满足不同要求;碱激发胶凝材料具有早强、高强的特点,28 d抗压强度可达到60 MPa以上,3 d抗压强度可达到稳定强度的70%以上;碱激发胶凝材料高温下性能较稳定,在600~800℃的高温下抗压强度可达到常温状态下的60%以上;碱激发胶凝材料具有优异的抗冻融性能,其抗冻等级可达到F300以上;碱激发胶凝材料中由于没有极易遭受侵蚀的水化产物存在,故抗酸腐蚀能力强;碱激发胶凝材料由于孔结构致密,具有良好的抗渗性能。并针对碱激发胶凝材料优选配比和应用所需要解决的收缩、泛霜等问题,对未来研究的方向进行了展望。  相似文献   

19.
介绍了碱激发胶凝材料的制备技术和碱激发反应机理,总结了碱激发胶凝材料的工作性能、力学性能、耐久和耐高温特性。分析表明:激发剂的掺量和水玻璃模数是影响碱激发胶凝材料凝结时间和流动度的关键参数,凝结时间介于13~183 min之间,终凝时间介于15~215 min之间,流动度介于133~230 mm之间,可通过改变激发剂的掺量和水玻璃模数使凝结时间和流动性满足不同要求;碱激发胶凝材料具有早强、高强的特点,28 d抗压强度可达到60 MPa以上,3 d抗压强度可达到稳定强度的70%以上;碱激发胶凝材料高温下性能较稳定,在600~800℃的高温下抗压强度可达到常温状态下的60%以上;碱激发胶凝材料具有优异的抗冻融性能,其抗冻等级可达到F300以上;碱激发胶凝材料中由于没有极易遭受侵蚀的水化产物存在,故抗酸腐蚀能力强;碱激发胶凝材料由于孔结构致密,具有良好的抗渗性能。并针对碱激发胶凝材料优选配比和应用所需要解决的收缩、泛霜等问题,对未来研究的方向进行了展望。  相似文献   

20.
以碱激发矿粉为胶凝材料制备泡沫混凝土,分别研究了碱激发剂氢氧化钠、氢氧化钠-水玻璃、氢氧化钠-水玻璃-柠檬酸钠与发泡剂的相容性,及其对泡沫混凝土工作性、力学性能和微观结构的影响,并揭示了其性能影响机制。结果表明:碱激发剂并不影响发泡剂的发泡效果,两者相容性良好;采用氢氧化钠-水玻璃-柠檬酸钠作激发剂,水玻璃模数为1.2、水玻璃掺量为15%、柠檬酸钠掺量为0.5%时,泡沫混凝土流值约为190 mm,抗压强度大于1.5 MPa,凝结时间大于3 h,施工性能良好。XRD和SEM分析表明,矿粉激发后水化产物形成蓬松网格状结构,在掺有水玻璃时,形成的网络结构致密,泡沫单独成孔,多呈球状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号