首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
P92钢作为新一代耐热钢,其服役温度正随着超超临界机组的不断推广而逐渐提高,而高温疲劳性能对保证电厂的安全运行具有重大作用.文中通过P92钢630℃下的疲劳试验,研究了其在不同应变幅和应变速率下的疲劳寿命以及应力—应变关系,并结合断口形貌分析了P92钢的断裂机理.结果表明,P92钢属于高温循环软化材料,其疲劳寿命随塑性应变幅的增大而呈指数下降,同时应变速率的增大会导致其疲劳寿命的增大.P92钢疲劳断口分为疲劳源区、裂纹扩展区以及断裂区.高应变幅下蠕变孔洞和二次裂纹的增加是导致其疲劳寿命降低的主要原因.  相似文献   

2.
P92钢作为新一代耐热钢,其服役温度正随着超超临界机组的不断推广而逐渐提高,而高温疲劳性能对保证电厂的安全运行具有重大作用.文中通过P92钢630℃下的疲劳试验,研究了其在不同应变幅和应变速率下的疲劳寿命以及应力—应变关系,并结合断口形貌分析了P92钢的断裂机理.结果表明,P92钢属于高温循环软化材料,其疲劳寿命随塑性应变幅的增大而呈指数下降,同时应变速率的增大会导致其疲劳寿命的增大.P92钢疲劳断口分为疲劳源区、裂纹扩展区以及断裂区.高应变幅下蠕变孔洞和二次裂纹的增加是导致其疲劳寿命降低的主要原因.  相似文献   

3.
彭剑  高毅  代巧  王颖  李凯尚 《金属学报》2019,55(6):773-782
对316L奥氏体不锈钢非对称拉-拉疲劳载荷作用下的疲劳和循环塑性行为进行研究。通过疲劳寿命、循环应变幅、平均应变、平均应变率和失效应变的差异划分高、低应力区:在高应力区,平均应变、平均应变率和失效应变大,存在显著的循环塑性变形,疲劳寿命短;在低应力区,循环塑性变形累积有限,疲劳寿命显著增加。通过失效区域的显微组织观察和断口分析发现:在高应力区断口附近产生了大量的孔洞,断口以韧窝为主要特征;在低应力区存在疲劳裂纹,其扩展方向垂直于加载方向,断口由起裂点、疲劳裂纹扩展区、过渡区和快速断裂区组成。316L奥氏体不锈钢高应力区为循环塑性变形主导区,失效形式为循环塑性累积产生的韧性失效;低应力区为疲劳主导区,失效形式为疲劳裂纹扩展失效。  相似文献   

4.
对IN718镍基高温合金进行温度循环为350~650℃及不同应变幅条件下的同相(IP)和反相(OP)热机械疲劳试验;比较同相和反相的热机械疲劳循环应力响应行为、滞后回线以及疲劳寿命;运用金相显微镜、扫描电子显微镜对材料的微观结构以及断口特征进行分析。结果表明:IN718合金的热机械疲劳应力-应变滞后回线最大拉应力与压应力不对称,表明合金在350~650℃范围内高温时抵抗变形阻力较小;合金的循环应力响应行为在低应变幅的同相热机械疲劳的高温半周呈现循环硬化现象,其余情况均为循环软化现象;合金的同相热机械疲劳寿命明显低于反相热机械疲劳寿命,合金热机械疲劳寿命在应变幅超过0.6%的条件下符合Coffin-Manson方程,在应变幅0.4%的情况下实际疲劳寿命值偏高;IN718合金的同相热机械疲劳的疲劳源处断口为沿晶断裂,反相热机械疲劳的为穿晶断裂,裂纹扩展区和瞬断区均为韧窝断裂。  相似文献   

5.
采用应变控制研究了工业纯钛的室温低周疲劳行为,对循环应力-应变行为和低周疲劳寿命数据进行了分析,得到了低周疲劳的相关参数;并对疲劳组织和疲劳断口进行观察与分析。结果表明:当总应变幅为0. 5%和0. 6%时,工业纯钛在疲劳变形前期表现为循环硬化,后期发生轻微的循环软化;当总应变幅大于0. 6%时,工业纯钛在疲劳变形过程中均呈现循环硬化现象。由显微组织观察可知,在低应变幅下,位错滑移是工业纯钛主要的疲劳变形机理,孪生变形在局部高应力集中区被激活;在高应变幅下,微观变形机制以孪生为主导,伴随着滑移。疲劳断口表明工业纯钛发生多源疲劳失效,在裂纹扩展区还会呈现二次裂纹,疲劳断裂为混合型断裂。  相似文献   

6.
汽车稳定杆用55Cr3弹簧钢的低周疲劳性能   总被引:2,自引:0,他引:2  
王锐  李世其 《物理测试》2006,24(1):6-9,19
从汽车稳定杆用钢的实际应用需求出发,采用轴向应变控制方法,应变循环比R为-1,试验频率为0.1~1.0 Hz,疲劳试验加载波形为三角波,轴向总应变幅范围设定为0.35%~1.2%,测试了55Cr3弹簧钢低周疲劳性能,并对试验数据进行拟合计算,得到55Cr3弹簧钢的循环应力 应变曲线、应变 寿命曲线和过渡疲劳寿命;通过拟合Basquin和Coffin Manson公式,获得了55Cr3弹簧钢的低周疲劳寿命预测公式,拟合R2值大于0.9。通过疲劳断口分析,55Cr3弹簧钢断裂起源于试样表面,且存在多处裂纹源,裂纹共同向内扩展,最后快速断裂。  相似文献   

7.
用X射线衍射分析、扫描电镜观察以及应变疲劳试验研究表明,Fe-Mn-Si形状记忆合金在承受正负交变应力作用时,可相应地发生应力诱发γ(←→)ε马氏体相变及其逆相变.Fe-Mn-Si形状记忆合金循环变形过程中的应力诱发γ(←→)ε马氏体相变及其逆相变能降低应力集中,抑制塑性滑移变形,减少疲劳裂纹的形成和扩展,使合金具有较高的应变疲劳强度.其弯曲疲劳断口类呈脆性断裂.Fe-17Mn-5Si-10Cr-5Ni试验合金在应变幅值为±1.5%下的应变疲劳寿命达1300次,是U71Mn轨钢和1Cr18Ni9Ti不锈钢的10倍左右.  相似文献   

8.
P92钢常用于锅炉高温、高压主蒸气管道等部件,其焊接接头性能的优劣直接关系到机组的安全可靠运行. 文中通过P92钢焊缝金属在630 ℃下的低周疲劳试验,研究了低周疲劳行为及其循环应力应变关系,采用塑性应变能密度对其低周疲劳进行了寿命预测,并根据断口形貌,分析了P92钢焊缝金属的断裂机理. 结果表明,P92钢焊缝金属表现出循环软化特征;其低周疲劳寿命与应变幅值满足Coffin-Manson关系;采用塑性应变能密度的方法可以很好地预测P92钢焊缝金属低周疲劳寿命. 二次裂纹密度的增加是其在高应变幅下寿命下降的主要原因.  相似文献   

9.
通过06Cr19Ni10钢疲劳试验研究其应力控制下的低周疲劳断裂特性。由光滑试件疲劳试验得到其S-N曲线并拟合表达式,分析不同应力下应变、塑性应变能与疲劳寿命之间的关系。由缺口试件疲劳试验研究缺口深度及缺口角度对疲劳寿命的影响。对疲劳断口的宏观及微观形貌进行分析。结果表明:裂纹萌生于试件表面,应力及缺口参数影响断口形貌。  相似文献   

10.
对热轧组织为铁素体+马氏体(1号)、铁素体+贝氏体+部分马氏体(2号)的600 MPa级热轧双相钢进行了应力比为0.1的拉-拉高周疲劳试验,并对疲劳性能进行了对比分析。结果表明:1号双相钢的疲劳极限为433 MPa,2号双相钢的疲劳极限为413 MPa。两种双相钢的疲劳断口均由疲劳源区、扩展区和瞬断区组成,疲劳源出现在试样顶角或近表面处,低应力时为单一疲劳源,高应力时为多疲劳源。裂纹扩展区除了有大量的韧窝,还有第二相粒子、疲劳辉纹和二次裂纹等特征。低应力幅时1号试样的疲劳辉纹较窄,疲劳寿命高于2号试样;高应力幅时2号试样的韧窝较深,疲劳寿命高于1号试样。在拉-拉载荷作用下,1号试样的裂纹为沿晶扩展,2号为穿晶扩展。透射电镜观察结果表明:在相近的应力幅下,疲劳断口附近高密度的位错缠结阻碍了位错的进一步运动,从而提高了双相钢的疲劳性能。  相似文献   

11.
In the present study, creep activation energy for rupture was obtained as 221-348 kJ/mol for 22Cr15Ni3.5 CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 10~5 h at 923 K for22 Cr15 Ni3.5 CuNbN is more valid(83.71 MPa) predicted by the Manson-Haferd method, which is superior to other commercial heat-resistant steels. The tensile creep tests ranging from 180 to 240 MPa at 923 K were conducted to investigate creep deformation behavior of welded joint between a novel heat-resistant austenite steel 22Cr15Ni3.5 CuNbN and ERNiCrCoMo-1 weld metal. Apparent stress exponent value of 6.54 was obtained, which indicated that the ratecontrolled creep occurred in weldment during creep. A damage tolerance factor of 6.4 in the weldment illustrates that the microstructural degradation is the dominant creep damaging mechanism in the alloy. Meanwhile, the welded joints perform two types of deformation behavior with the variation in applied stress, which resulted from the different parts that govern the creep processing. Also, the morphology evolution of the fracture surfaces confirms the effects of stress level and stress state.  相似文献   

12.
《Acta Materialia》2001,49(2):339-351
The cyclic deformation characteristics and fatigue behaviour of a superaustenitic stainless steel with composition Fe–25Cr–22Ni–7.6Mo–3Mn–0.46N (wt%) have been investigated. Detailed studies were performed on cyclic hardening/softening behaviour, hysteresis loops, waveform, fatigue lifetime, and internal as well as effective stresses during cyclic straining in the total strain amplitude range 2.7·10−3–1.0·10−2. Special attention is paid to the role of nitrogen and the interaction between nitrogen and molybdenum. Immediate cyclic softening takes place at small strain amplitudes, whereas hardening occurs during the first few cycles at large strain amplitudes followed by softening. For all strain amplitudes a virtually stationary state develops after about 10% of the lifetime with only a weak decrease of the peak stresses. In the cyclic stress–strain curve the material hardens linearly during multi step testing, whereas single step testing leads to excessive hardening at the largest strain amplitudes. During strain cycling the internal stresses develop like the total stresses, while the effective stresses decrease with increasing number of cycles for all strain amplitudes and also diminish with increased strain amplitude. This behaviour is discussed in terms of developing dislocation structures, studied in an accompanying paper. A double slope behaviour in Coffin–Manson diagrams is observed. The fatigue lifetime resembles that of AISI 316 with 0.29 wt% nitrogen at high strain amplitudes but is shorter at lower strain amplitudes. However, in stress controlled situations the superaustenitic material is superior.  相似文献   

13.
在650℃以及拉压对称三角波(TR)、慢拉快压锯齿波(ST)和快拉慢压锯齿波(FT)3种应变波形下对Inconel625合金进行了低周疲劳实验,研究了合金在不同应变波形下的低周疲劳变形与断裂行为。结果表明:3种应变波形加载条件下,合金在0.3%~0.7%的外加总应变幅下均呈现循环硬化,其中在ST下的循环应力幅最高;采用锯齿波形时,由于拉伸蠕变分量和压缩蠕变分量的引入造成合金的疲劳寿命缩短;此外,合金的循环应力和应变之间呈现单斜率线性关系,且其塑性应变幅与弹性应变幅和疲劳寿命之间亦呈线性关系。利用扫描电子显微镜对Inconel625合金在3种加载波形下的低周疲劳断口形貌进行观察,结果表明,Inconel 625合金的疲劳裂纹萌生和扩展均是以穿晶方式进行的。  相似文献   

14.
Zr41.25Ti13.75Ni10Cu12.5Be22.5块状非晶合金的低周疲劳行为   总被引:3,自引:0,他引:3  
研究了室温完全反向应力控制条件下块状非晶合金Zr41.25Til3.75Nil0Cul2.5Be22.5的低周疲劳行为,结果表明,完全非晶和合晶态相非晶合金均表现为循环稳定直至断裂.完全非晶合金的寿命远高于合晶态相非晶合金.通过试样断裂表面及外表面SEM观察,解释了应变稳定循环产生的机制.两种非晶合金的疲劳断口均可观察到裂纹的萌生、扩展及过载断裂区.合晶态相非晶中的晶态相没有起到阻碍裂纹扩展的作用,而是作为裂纹萌生点或疏松.  相似文献   

15.
1.IntroductionFatigueistakenasapotentialfailuremodeintheRulesforConstructionofNuclearPowerPlantComponentsofASMESectionill[1].ThedesignS-NcurveisdevelopedfirstlybyusingtheLangerS--Nmodel[21fittingthedataofvirtualstressamplitudeandcyclestocrackinitiation,whichareobtainedfromuniaxialstrain-controlledtestonsmall-sizepolishedbarspecimensinairenvironment,toobtainameanbest--fitcurve.Next,twotypesofcorrection,ameanstresscorrectionandatemperaturecorrection,areappliedtothemeancurve.Then,thedataar…  相似文献   

16.
通过对新型22Cr-25Ni奥氏体耐热钢经650 ℃、700 ℃高温时效不同时间后进行硬度、室温拉伸、冲击试验,并利用光学显微镜、扫描电镜观察了其显微组织和室温冲击断口,研究了22Cr-25Ni钢时效后力学性能变化情况。结果表明,22Cr-25Ni钢经高温时效后,硬度、室温拉伸强度得到强化,在时效1000 h后达到最大值之后趋于稳定,22Cr-25Ni钢同时具有明显的时效脆性倾向,冲击吸收能量下降幅度较大,650 ℃时效100 h后冲击吸收能量由时效前的198 J下降到111 J,700 ℃时效100 h后冲击吸收能量仅为47 J,随着时效时间继续增加,当时效3000 h后冲击吸收能量减少到20 J,随后趋于稳定。22Cr-25Ni钢在高温时效后的力学性能变化主要是由CrNbN(Z相)、M23C6、MX这3种析出相的共同作用造成的。  相似文献   

17.
为了研究00Cr22Ni13Mn5Mo2N奥氏体不锈钢的精轧工艺,使用Gleeble-3800热模拟试验机模拟00Cr22Ni13Mn5Mo2N奥氏体不锈钢在变形温度为800、850、900、950 ℃,变形量为40%、50%、60%,应变速率为50 s-1条件下的热压缩变形行为,并对其进行1080、1120、1160 ℃的固溶热处理,观察固溶热处理前后的组织形貌。结果表明:在800~950 ℃热压缩温度下,随变形量增大,再结晶越完全,再结晶平均晶粒尺寸越细小;经固溶处理1 h后,静态再结晶就越充分。在40%~60%变形量下,随热压缩温度升高,再结晶越完全,再结晶平均晶粒尺寸越大。热压缩变形试验钢随固溶处理温度升高,再结晶平均晶粒尺寸越大。00Cr22Ni13Mn5Mo2N奥氏体不锈钢的精轧最佳轧制温度为800 ℃,压缩变形量为60%,固溶温度为1080 ℃。  相似文献   

18.
19.
冯淘  陈良奭  柯伟 《金属学报》1990,26(6):94-99
本文研究了0Cr18Ni9Ti奥氏体不锈钢在42%沸腾MgCl_2中,在低频,高平均应力循环载荷下的环境敏感断裂行为,研究了应力腐蚀疲劳与应力腐蚀在裂纹扩展规律及断口形貌上的差别与联系。从断裂特征上分析了应力腐蚀与腐蚀疲劳的交互作用,并着重研究了外加极化电位对这种交互作用的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号