首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
对不同重量的TiO2电极熔盐电解法制取金属钛进行了研究,分析了电解过程中的电流变化、物相组成和形貌特征.实验表明,电解前期,形成了中间产物CaTiO3,这也是主要的中间产物,随后形成的中间产物有Ti4O7、Ti3O5和Ti2O3等较高价钛氧化物,随着电解进行,它们逐步被还原为较低价的钛氧化物和纯钛.电解21h以上,产物为纯钛,氧含量为0.34%左右;延长电解时间到30 h后,电解得到的纯钛衍射峰值降低、峰也有所宽化,这可能是纯钛中固溶入一些杂质造成的,同时电解产物的晶粒显著增大.电解不彻底时,会有TiC中间产物保留在电解产物中.在TiO2的电化学还原过程中,氧的离子化机制和钙热还原机制同时存在.  相似文献   

2.
以无水氯化钙作为熔盐,采用熔盐电解法对TiO2阴极片进行脱氧,通过X射线衍射(XRD)和扫描电镜(SEM)对TiO2电解产物的相组成、电极表面形貌与元素组成进行观察与分析,研究熔盐的预电解脱水与熔盐电解时间对TiO2电解脱氧行为的影响。结果表明,熔盐未经预电解时,TiO2阴极片不发生脱氧反应,电解产物只有CaTiO3相;熔盐经预电解脱水后,TiO2电解产物部分或全部为低价钛氧化物,预电解时间达到15h即可有效去除熔盐中的水分,从而获得较佳的熔盐电解脱氧效果,电解产物为氧含量较低的Ti2O。TiO2电解脱氧是分步进行的,随电解进行,先后出现Ti2O3、TiO、Ti2O,由于钛的化合价逐渐降低,所需分解压升高,导致脱氧效率逐渐降低。TiO2阴极的脱氧反应是由表面到心部进行,电解后的阴极片明显分层,表层为氧含量较低的Ti2O,中间层为CaTiO3和钛的低价氧化物,心部为CaTiO3。  相似文献   

3.
熔盐电解法制备高钛铁合金   总被引:6,自引:0,他引:6  
采用电化学还原法,温度为900℃,在CaCl2熔盐中以烧结的TiO2与钛铁矿混合物(Ti:Fe=1:1原子比)为阴极,石墨棒为阳极,制备出了高钛铁合金.探讨了混合物烧结后的相组成变化及高钛铁合金的合金化历程.实验结果表明,混合物烧结后,TiO2由锐钛矿结构转变为金红石结构,钛铁矿转化为热力学稳定的Fe2TiO5.钛铁矿的晶体结构由烧结前的三方晶系经950℃以上烧结后,转变为斜方晶系的Fe2TiO5.制备出的高钛铁中铁钛含量分别为:77.19%和9.68%(质量分数).其合金化历程为:TiO2先生成CaTiO3,然后继续脱氧还原为金属钛;钛铁矿优先还原出金属铁,然后与生成的金属钛发生合金化反应生成钛铁合金.表明熔盐电解nO2与钛铁矿的混合物是一条制备高钛铁合金的新途径.优化电解条件提高电流效率可进一步提高电解速度,得到质量更高的高钛铁合金.  相似文献   

4.
以钛精矿和石墨为原料,在氮气气氛下通过碳热还原法制备出碳氮化钛(Ti CN)粉体。结合XRD、SEM、化学成分分析和TG-DSG综合热分析研究了配碳量及反应温度对钛精矿碳热还原进程的影响。研究结果表明,配碳量的增加影响逐级还原反应温度以及反应总失重,当配碳量达到23%时碳氮化钛产物中出现游离碳。钛精矿碳热还原过程中铁氧化物优先还原,钛氧化物经逐级还原形成Ti CN,还原顺序为Ti O2→Ti4O7→Ti3O5→Ti N→Ti(C,N,O)→Ti CN。得到的碳氮化钛粉体呈微米级不规则形状。  相似文献   

5.
在高纯氩气气氛下,在CaCl2熔盐中电解高钛渣制备金属钛,研究了成型压力与阴极片孔隙率的关系以及对电解过程的影响,并采用XRD、SEM等分析手段对阴极片及电解后的物相和微观形貌结构进行表征.结果 表明:成型压力对阴极片孔隙率有直接影响,随着成型压力升高,阴极孔隙率下降;阴极片的孔隙率直接影响电脱氧过程,适当的孔隙率有利于形成中间产物CaTiO3和提高电还原速率.4 MPa压制的阴极1050℃烧结2h,孔隙率为34.79%,电解12h产物氧含量降低至1.75%,钛含量为95.72%,此时阴极片的电化学性能较好.  相似文献   

6.
熔盐电解制备钛锆合金及其反应过程研究   总被引:2,自引:1,他引:1  
采用熔盐电解法由ZrO_2与TiO_2混合氧化物(Ti, Zr原子比为1∶ 1)一步制备出了TiZr合金, 并探讨了反应机制. 温度为900 ℃, CaCl_2熔盐中以烧结的ZrO_2与TiO_2混合氧化物为阴极,石墨棒为阳极, 3.1 V恒电压电解, 制备出了钛锆合金. 结果表明, 所得产物的组分与投料比例一致, 钛、锆为无限互溶的固溶体, 电解反应是由外向内进行的. 其合金化历程为: 部分ZrO_2先生成CaZrO_3, 然后继续脱氧还原为锆的低价氧化物直至还原为金属锆, 一旦有金属锆生成, TiO_2在金属锆上直接电解还原形成钛的低价氧化物, 直至生成金属钛后与锆形成固溶体; 其余ZrO_2, TiO_2先形成CaZr_mTi_nO_x, 然后直接脱氧还原为TiZr.  相似文献   

7.
本研究通过Sr F_2-Na F熔盐电解Ti O_2制备了金属钛。分别以Ti O_2片、Ti O_2粉末-不锈钢网作为电解阴极,研究阴极孔隙率、电解时间、添加剂等因素对电解效果的影响,并对产物进行了XRD分析。研究发现:阴极孔隙率是电脱氧反应的重要影响因素;Ti O_2在Sr F_2-Na F熔盐中按Sr Ti O_2.6→Ti_2O_3→Ti_2O→Ti顺序被还原;Ti O_2粉末-不锈钢网阴极由于其高孔隙率,O~(2-)传输相对容易,在3.0 V的槽电压下电解持续6 h可得到较纯净的金属钛,电流效率为31.08%。  相似文献   

8.
碳热还原法制取Ti(C,N)的热力学原理   总被引:2,自引:1,他引:2  
分析了以TiO2为原料,用碳热还原法制取Ti(C,N)的热力学原理。结果表明钛氧化物的还原是逐级进行的,反应过程伴随着相变,当TiO2粉末和C粉末均匀混合时还原碳化反应主要依赖于CO/CO2传质的气固反应,当TiO2颗粒表面被C包膜时主要是碳和钛氧化物之间的固固反应,当TiO2粉末和C粉末混合压球时则两种反应机理均有。升高温度有利于还原进行,钛氧化物的开始还原温度随气相中的CO分压降低而降低。Ti(C,N)中的C,N含量取决于温度和N2压力。  相似文献   

9.
电炉熔炼钛精矿的热力学讨论   总被引:2,自引:0,他引:2  
对攀枝花钢铁研究院电炉熔炼钛精矿的有关反应进行热力学分析,认为在电炉熔炼过程中钛精矿中游离的FeO和Fe2O3首先被还原,然后钛精矿中的主要成分FeTiO3按下列顺序逐步被还原FeO·TiO2→Fe+TiO2→Fe+Ti3O5→Fe+Ti2O3→Fe+TiO;MgO、CaO和Al2O3等杂质在电炉还原熔炼钛精矿的温度(2000K左右)下不可能被还原,从而进入钛渣中;电炉熔炼得到钛渣主要物相为黑钛石,玻璃体硅酸盐相.  相似文献   

10.
固态原位电还原TiO2制取Ti的阴极还原过程   总被引:1,自引:0,他引:1  
运用循环伏安法对固态原位电还原TiO2制取B的阴极还原过程进行了研究,探讨了固态原位电还原TiO2制取Ti的电解机理.研究发现,固态TiO2原位直接电还原为Ti是分步进行的:第一步为可逆、产物不溶的二电子反应,即Ti(Ⅳ)+2e=Ti(Ⅱ);第二步同样为可逆、产物不溶的二电子反应,Ti(Ⅱ)+2e=Ti.同时,在电解温度下,CaCl2熔体中存在着少量CaO.Ca2+在阴极放电析出金属Ca,即Ca2++2e=Ca,生成的金属Ca热还原TiO2生成金属Ti.固态原位电还原TiO2制取Ti是TiO2的直接电还原与Ca热还原TiO2共同作用的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号