共查询到19条相似文献,搜索用时 62 毫秒
1.
基于电力负荷模式分类的短期电力负荷预测 总被引:9,自引:6,他引:9
根据历史数据集的基本知识建立一个基于模糊规则的电力负荷模式分类系统,在考虑规则的分类准确性和可解释性的情况下,利用遗传优化算法挑选出Pareto最优模式分类规则集用于电力负荷模式分类.并在仿真试验中,将此分类系统用于电力负荷预测,结果表明此分类系统具有较好的分类性能,可为电力负荷预测提供更为充分有效的历史数据,从而改善其负荷预测性能. 相似文献
2.
3.
基于小波变换及最小二乘支持向量机的短期电力负荷预测 总被引:41,自引:7,他引:34
提出了采用小波变换和最小二乘支持向量机混合模型进行电力系统短期负荷预测的方法。首先基于小波多分辨率分析方法将负荷序列分解成具有不同频率特征的序列:然后根据分解后各分量的特点构造不同的支持向量机模型对各分量分别进行预测:最后对各分量预测信号进行重构得到最终预测结果。在构建支持向量机模型时考虑了气候因素的影响,并将其作为模型的一组输入点。实验结果表明基于该方法的负荷预测系统具有较高的预测精度。 相似文献
4.
5.
6.
7.
介绍了短期电力负荷的预测方法,对银川市2011年短期电力预测结果进行分析比较,为本地区电网平衡与系统稳定提供参考,并对进一步提高预测准确性提出了建议。 相似文献
8.
针对短期负荷预测精度低、准确性差等问题,将猫群算法CSO和BP神经网络相结合用于短期负荷预测,模型的输入因子是负荷数据和气象信息等,利用猫群算法对BP神经网络的权值和阈值进行优化,得到BP神经网络预测模型的最优解,建立了短期预测模型。通过实例验证了预测模型的有效性和有效性,结果表明,改进模型能够有效降低BP神经网络模型的预测误差,提高预测精度,为我国电力系统短期负荷预测的发展提供了参考和借鉴。 相似文献
9.
10.
11.
人工鱼群神经网络在电力系统短期负荷预测中的应用 总被引:14,自引:3,他引:11
短期负荷预测结果对电力系统的经济效益具有重要影响.人工鱼群算法是最新提出的新型寻优策略,具有良好的克服局部极值、获得全局极值的能力.文章建立了一种新的人工鱼群神经网络预测模型,利用人工鱼群算法训练神经网络的权值,再将该神经网络用于短期负荷预测.对某电力系统进行的负荷预测结果表明,该方法与传统的BP神经网络预测方法相比具有较强的自适应能力和较好的预测效果. 相似文献
12.
13.
电力系统短期负荷预测是保证电力系统安全经济运行和实现电网科学管理及调度的重要依据,目前的电力系统短期负荷预测方法存在着一些不足.提出了基于人工神经网络与主分量分析的短期负荷预测方法,在试验中分别采用该方法和单一的人工神经网络对辽宁省某电网的短期负荷进行了预测,试验结果表明本文提出的方法与单一的人工神经网络预测法相比,不... 相似文献
14.
15.
基于模糊粗糙集和神经网络的短期负荷预测方法 总被引:18,自引:1,他引:18
针对采用神经网络进行电力系统短期负荷预测时其网络输入变量的选择是影响预测效果的关键问题,该文提出使用模糊粗糙集理论解决这一问题:对采集到的信息进行特征提取、形成决策表;利用模糊粗糙集理论进行属性约简、去除冗余信息;用得到的属性作为BP网络的输入进行训练预测。该方法既全面考虑了影响负荷预测的历史时间序列、气象等各种因素,为合理地选择神经网络的输入变量提供了一种新的方法,又避免了由于输入变量过多而导致神经网络拓扑结构复杂、训练时间长等不足。计算实例表明,文中提出的方法是有效且可行的。 相似文献
16.
电力系统负荷预测是电力研究的一个重要组成部分,随着电力智能化的加快发展,为电力负荷预测提供了更准确有效的方法。目前有多种电力负荷预测方法,但由于预测模型适用条件的限制,使得负荷预测存在困难。因此,本文选择了基于统计理论的支持向量回归方法来进行预测。文中结合贵州某经济开发区短期电力负荷的历史数据,应用支持向量回归法对该负荷进行了预测,得到了精度较高的预测结果。 相似文献
17.
18.
针对配电网负荷随时间空间变化的非线性特征导致短期负荷预测精度低和模型训练时间成本高的问题,设计了一种基于相空间重构(phase space reconstruction, PSR)和随机配置网络(stochastic configuration networks, SCN)的电力负荷短期预测模型。首先将配电网数据中与负荷相关的气象数据通过主元分析法(principal component analysis, PCA)进行数据降维,并与负荷序列组合成多变量的时间序列,运用混沌时间序列理论,通过互信息法和虚假近邻法求取参数并重构相空间,最后使用随机配置网络预测电力负荷。采用欧洲电网公开数据集的历史负荷和气象数据验证所提方法,结果表明,与网格搜索法优化的支持向量机(support vector machines, SVM)、反向传播神经网络(back propagation neural networks, BP)、长短期记忆网络(long short-term memory network, LSTM)和整合移动平均自回归(autoregressive integrated moving average, ARIMA)相比,所设计方法具有智能化水平高、运算高效的特点,有一定的实用价值。 相似文献
19.
小波模糊神经网络在电力系统短期负荷预测中的应用 总被引:32,自引:10,他引:32
该文研究了基于小波模糊神经网络的电力系统短期负荷预测新方法。根据小波变换自适应可调时频窗的特点,利用小波分析对负荷样本做序列分解,对高尺度负荷分量采用常规预测方法,其他负荷分量则采用模糊神经网络处理技术,最后通过序列重构,得到完整的负荷预测结果。算例计算表明,新方法具有较高的预测精度和适应能力。 相似文献