首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse.  相似文献   

2.
Inhibition of Clostridium perfringens germination and outgrowth by salts of organic acids such as sodium lactate, sodium acetate, buffered sodium citrate and buffered sodium citrate supplemented with sodium diacetate was evaluated during continuous chilling of ground turkey. Turkey breast meat was injected with a brine-containing NaCl, potato starch and potassium tetra pyrophosphate to yield final in-product concentrations of 0.85%, 0.25% and 0.20%, respectively. The meat was ground, mixed with either sodium lactate (1%, 2%, 3% or 4%), sodium acetate (1% or 2%), buffered sodium citrate (Ional, 1%) or buffered sodium citrate supplemented with sodium diacetate (Ional Plus trade mark, 1%), in addition to a control that did not contain added antimicrobials. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log10 spores/g. Inoculated products (10 g) were packaged into cook-in-bags (2 x 3 in.), vacuum sealed, cooked at 60 degrees C for 1 h, and subsequently chilled from 54.4 to 7.2 degrees C in 15, 18 and 21 h following exponential chilling rates. Products were sampled immediately after cooking and then after chilling. Chilling of cooked turkey following 15, 18 and 21 h chill rates resulted in germination and outgrowth of C. perfringens spores to 6.6, 7.58 and 7.95 log10 CFU/g populations, respectively, from initial spore populations of ca. 2.80 log10 CFU/g. Incorporation of sodium lactate (1%), sodium acetate (1%), Ional or Ional Plus (1%) substantially inhibited germination and outgrowth of C. perfringens spores compared to controls. Final C. perfringens total populations of 3.12, 3.10, 2.38 and 2.92 log10 CFU/g, respectively, were observed following a 15-h exponential chill rate. Similar inhibitory effects were observed for 18 and 21 chill rates with the antimicrobials at 1% concentrations. While sodium lactate and sodium acetate concentrations of 1% were sufficient to control C. perfringens germination and outgrowth (<1.0 log10 CFU/g growth) following 15 h chill rates, higher concentrations were required for 18 and 21 h chill rates. Ional at 1% concentration was effective in inhibiting germination and outgrowth to <1.0 log10 CFU/g of C. perfringens for all three chill rates (15, 18 and 21 h) tested. Use of sodium salts of organic acids in formulation of ready-to-eat meat products can reduce the risk of C. perfringens spore germination and outgrowth during chilling.  相似文献   

3.
This study evaluated the effect of organic acids and spices, alone or combined, on Clostridium perfringens growth in cooked ground beef during alternative cooling procedures. Ground beef was inoculated with a three-strain cocktail of C. perfringens (ATCC 10388, NCTC 8238, and NCTC 8239) at 2 log spores per g and prepared following an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate [wt/wt]). Treatments consisted of the base meat plus combinations of commercial solutions of sodium lactate or sodium citrate (0 or 2%, wt/wt) with chili, garlic and herbs, curry, oregano, or clove in commercial powder form (0 or 1%, wt/wt). Untreated meat was used as a control. Vacuum-packaged samples of each treatment were cooked (75 degrees C for 20 min) and cooled from 54.4 to 7.2 degrees C in 15, 18, or 21 h. Spore counts were estimated after inoculation, cooking, and cooling. All treatments containing sodium citrate reduced the population of C. perfringens about 0.38 to 1.14 log units during each of the three cooling procedures. No sodium citrate and spice treatment combinations showed antagonisms or synergisms. Regardless of the cooling time, the control ground beef or treatments with any of the five spices alone supported C. perfringens growth above the U.S. Department of Agriculture stabilization guidelines of 1 log unit. Except for the 21-h cooling period, addition of sodium lactate prevented C. perfringens growth over 1 log unit. Depending on the cooling time and spice, some combinations of sodium lactate and spice kept C. perfringens growth below 1 log unit.  相似文献   

4.
Control of Clostridium perfringens germination and outgrowth by the following salts of organic acids, sodium lactate [Purasal?S/SP (Purasal); 1.50, 3.00 and 4.80%], sodium lactate supplemented with sodium diacetate [Purasal? Opti.form? (Optiform), 1.50, 3.00 and 4.80%], buffered sodium citrate [Ional? (Ional), 0.75, 1.00 and 1.30]) and buffered sodium citrate supplemented with sodium diacetate [Ional Plus? (Ional Plus), 0.75, 1.00 and 1.30%] was evaluated during continuous chilling of a model roast beef product. Beef rounds were ground through an 1/8′’ plate and NaCl, potato starch and potassium tetra pyrophosphate were added to final concentrations of 0.85, 0.25 and 0.20%, respectively, and mixed. Portions (250 g) of the meat were mixed with either Purasal (1.5, 3.0 or 4.8%), Optiform (1.5, 3.0 or 4.8%), Ional (0.75, 1.0 or 1.3%) or Ional Plus (0.75, 1.0 or 1.3%) along with a control that did not have any added antimicrobials. Each product (10 g) inoculated with C. perfringens spores (ca. 2.2 log10 spores/g) was packaged into vacuum bags (2 in. × 3 in.), vacuum sealed, heated to 60C within 1 h, and subsequently chilled from 54.4C to 7.2C in 18 or 21 h following exponential chilling rates. Products were sampled immediately after cooking to enumerate the C. perfringens populations (spores surviving heat treatment) and subsequent to chilling (total C. perfringens populations, including spores and vegetative cells resulting from germination and outgrowth of the spores). Chilling of cooked, model ground roast beef resulted in germination and outgrowth of C. perfringens spores; the population densities increased by 4.13 and 4.40 log10 CFU/g, following 18 and 21 h chill rates, respectively. Incorporation of Purasal (1.5–4.8%), Optiform (1.5–4.8%), Ional and Ional Plus (0.75–1.3%) substantially (P ± 0.05) inhibited germination and outgrowth of C. perfringens spores. Incorporation of antimicrobial ingredients resulted in ± 1.0 log10 CFU/g increase of the pathogen, except for model roast beef with Ional Plus at 0.75% concentration, following 18 h chilling rate. Similar results were obtained when 21 h chilling rate was followed, with roast beef containing ingredients (at all the concentrations) resulting in either reductions or ± 1.0 log10 CFU/g growth in total C. perfringens populations, except for Purasal and Ional Plus at 1.5 and 0.75% concentrations, respectively. Use of sodium salts of organic acids in formulation of model roast beef can reduce the risk of C. perfringens spore germination and outgrowth during extended chilling rates.  相似文献   

5.
Clostridium perfringens spore destruction, aerobic plate counts (APCs), and counts of Enterobacteriaceae, coliforms, and Escherichia coli during baking of sambusa (a traditional Tajik food) were evaluated. Control of germination and outgrowth of C. perfringens spores in sambusa during cooling at room or refrigerated temperatures was evaluated using organic acid salts (buffered sodium citrate [Ional] and 1 and 2% potassium lactate, wt/wt). Sambusa were prepared with 40 g of either inoculated or noninoculated meat and baked for 45 min at 180 degrees C. For evaluation of destruction of C. perfringens spores during heating and germination and outgrowth of spores during cooling, ground beef was inoculated and mixed with a three-strain cocktail of C. perfringens spores. Aerobic bacteria, Enterobacteriaceae, coliforms, and E. coli were enumerated in noninoculated sambusa before and after baking and after cooling at room or refrigeration temperatures. After baking, APCs and Enterobacteriaceae and coliform counts were reduced by 4.32, 2.55, and 1.96 log CFU/g, respectively. E. coli counts were below detectable levels in ground beef and sambusa samples. Enterobacteriaceae, coliform, and E. coli counts were below detectable levels (< 0.04 log CFU/g) in sambusa after cooling by both methods. Total C. perfringens populations increased (4.67 log CFU/g) during cooling at room temperature, but minimal increases (0.31 log CFU/g) were observed during cooling under refrigeration. Incorporation of 2% (wt/wt) buffered sodium citrate controlled C. perfringens spore germination and outgrowth (0.25 log CFU/g), whereas incorporation of up to 2% (wt/wt) potassium lactate did not prevent C. perfringens spore germination and outgrowth. Incorporation of organic acid salts at appropriate concentrations can prevent germination and outgrowth of C. perfringens in improperly cooled sambusa.  相似文献   

6.
Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75 degrees C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6 degrees C in 2 h and from 26.6 to 4.4 degrees C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products.  相似文献   

7.
Inhibition of the germination and outgrowth of Clostridium perfringens by buffered sodium citrate (Ional) and buffered sodium citrate supplemented with sodium diacetate (Ional Plus) during the abusive chilling of roast beef and injected pork was evaluated. Beef top rounds or pork loins were injected with a brine containing NaCl, potato starch, and potassium tetrapyrophosphate to yield final in-product concentrations of 0.85, 0.25, and 0.20%, respectively. Products were ground and mixed with Ional or Ional Plus at 0, 0.5, 1.0, and 2.0%. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.5 log10 spores per g. Chilling of roast beef from 54.4 to 7.2 degrees C resulted in C. perfringens population increases of 1.51 and 5.27 log10 CFU/g for 18- and 21-h exponential chill rates, respectively, while chilling of injected pork resulted in increases of 3.70 and 4.41 log10 CFU/g. The incorporation of Ional into the roast beef formulation resulted in C. perfringens population reductions of 0.98, 1.87, and 2.47 log10 CFU/g with 0.5, 1.0, and 2.0% Ional, respectively, over 18 h of chilling, while > or = 1.0% Ional Plus was required to achieve similar reductions (reductions of 0.91 and 2.07 log10 CFU/g were obtained with 1.0 and 2.0% Ional Plus, respectively). An Ional or Ional Plus concentration of > or = 1.0% was required to reduce C. perfringens populations in roast beef or injected pork chilled from 54.4 to 7.2 degrees C in 21 h. Cooling times for roast beef or injected pork products after heat processing can be extended to 21 h through the incorporation of > or = 1.0% Ional or Ional Plus into the formulation to reduce the potential risk of C. perfringens germination and outgrowth.  相似文献   

8.
A total of 445 whole-muscle and ground or emulsified raw pork, beef, and chicken product mixtures acquired from industry sources were monitored over a 10-month period for vegetative and spore forms of Clostridium perfringens. Black colonies that formed on Shahidi-Ferguson perfringens (SFP) agar after 24 h at 37 degrees C were considered presumptive positive. Samples that were positive after a 15-min heat shock at 75 degrees C were considered presumptive positive for spores. Of 194 cured whole-muscle samples, 1.6% were positive; spores were not detected from those samples. Populations of vegetative cells did not exceed 1.70 log10 CFU/g and averaged 1.56 log10 CFU/g. Of 152 cured ground or emulsified samples, 48.7% were positive, and 5.3% were positive for spores. Populations of vegetative cells did not exceed 2.72 log10 CFU/g and averaged 1.98 log10 CFU/g; spores did not exceed 2.00 log10 CFU/g and averaged 1.56 log10 CFU/g. Raw bologna (70% chicken), chunked ham with emulsion, and whole-muscle ham product mixtures were inoculated with C. perfringens spores (ATCC 12916, ATCC 3624, FD1041, and two product isolates) to ca. 3.0 log10 CFU/g before being subjected either to thermal processes mimicking cooking and chilling regimes determined by in-plant temperature probing or to cooking and extended chilling regimes. Populations of C. perfringens were recovered on SFP from each product at the peak cook temperatures, at 54.4, 26.7, and 7.2 degrees C, and after up to 14 days of storage under vacuum at 4.4 degrees C. In each product, populations remained relatively unchanged during chilling from 54.4 to 7.2 degrees C and declined slightly during refrigerated storage. These findings indicate processed meat products cured with sodium nitrite are not at risk for the growth of C. perfringens during extended chilling and cold storage.  相似文献   

9.
Inhibition of Clostridium perfringens spore germination and outgrowth by carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground beef (75% lean) obtained from a local grocery store. Test substances were mixed into thawed ground beef at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log spores per g. Aliquots (5 g) of the ground beef mixtures were vacuum-packaged and then cooked in a water bath, the temperature of which was raised to 60 degrees C in 1 h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 3.18, 4.64, 4.76, and 5.04 log CFU/ g increases, respectively, in C. perfringens populations. Incorporation of test compounds (> or = 0.1%) into the beef completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling of the cooked beef in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (< 1.0 log CFU/g growth) at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h) than the other compounds. Incorporation of lower levels of these test compounds with other antimicrobials used in meat product formulations may reduce the potential risk of C. perfringens germination and outgrowth during abusive cooling regimes.  相似文献   

10.
Inhibition of Clostridium perfringens by plant-derived carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground turkey. Test substances were mixed into thawed turkey product at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.2 to 2.8 log CFU spores per g of turkey meat. Aliquots (5 g) of the ground turkey mixtures were vacuum packaged and then cooked in a water bath, where the temperature was raised to 60 degrees C in I h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 2.9-, 5.5-, 4.9-, and 4.2-log CFU/g increases, respectively, in C. perfringens populations in samples without antimicrobials. Incorporation of test compounds (0.1 to 0.5%) into the turkey completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations (0.5 to 2.0%) to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (<1.0-log CFU/g growth) than the other compounds at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h). These findings establish the value of the plant-derived antimicrobials for inhibiting C. perfringens in commercial ground turkey products.  相似文献   

11.
The effects of heating temperature (60 to 73.9 degrees C), sodium lactate (NaL; 0.0 to 4.8% [wt/wt]), and/or sodium diacetate (SDA; 0.0 to 0.25% [wt/wt]) and of the interactions of these factors on the heat resistance of a five-strain mixture of Listeria monocytogenes in 75% lean ground beef were examined. Thermal death times for L. monocytogenes in filtered stomacher bags in a circulating water bath were determined. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. Decimal reduction times (D-values) were calculated by fitting a survival model to the data with a curve-fitting program. The D-values were analyzed by second-order response surface regression for temperature, NaL level, and SDA level. The D-values observed for beef with no NaL or SDA at 60, 65, 71.1, and 73.9 degrees C were 4.67, 0.72, 0.17, and 0.04 min, respectively. The addition of 4.8% NaL to beef increased heat resistance at all temperatures, with D-values ranging from 14.3 min at 60 degrees C to 0.13 min at 73.9 degrees C. Sodium diacetate interacted with NaL, thereby reducing the protective effect of NaL and rendering L. monocytogenes in beef less resistant to heat. A mathematical model describing the combined effect of temperature, NaL level, and SDA level on the thermal inactivation of L. monocytogenes was developed. This model can predict D-values for any combination of temperature, NaL level, and SDA level that is within the range of those tested. This predictive model will have substantial practical importance to processors of cooked meat, allowing them to vary their thermal treatments of ready-to-eat meat products in a safe manner.  相似文献   

12.
In January 1999, the Food Safety and Inspection Service (FSIS) finalized performance standards for the cooking and chilling of meat and poultry products in federally inspected establishments. More restrictive chilling (stabilization) requirements were adopted despite the lack of strong evidence of a public health risk posed by industry practices employing the original May 1988 guidelines (U.S. Department of Agriculture FSIS Directive 7110.3). Baseline data led the FSIS to estimate a "worst case" of 10(4) Clostridium perfringens cells per g in raw meat products. The rationale for the FSIS performance standards was based on this estimate and the assumption that the numbers detected in the baseline study were spores that could survive cooking. The assumptions underlying the regulation stimulated work in our laboratory to help address why there have been so few documented outbreaks of C. perfringens illness associated with the consumption of commercially processed cooked meat and poultry products. Our research took into account the numbers of C. perfringens spores in both raw and cooked products. One hundred ninety-seven raw comminuted meat samples were cooked to 73.9 degrees C and analyzed for C. perfringens levels. All but two samples had undetectable levels (<3 spores per g). Two ground pork samples contained 3.3 and 66 spores per g. Research was also conducted to determine the effect of chilling on the outgrowth of C. perfringens spores in cured and uncured turkey. Raw meat blends inoculated with C. perfringens spores, cooked to 73.9 degrees C, and chilled according to current guidelines or under abuse conditions yielded increases of 2.25 and 2.44 log10 CFU/g for uncured turkey chilled for 6 h and an increase of 3.07 log10 CFU/g for cured turkey chilled for 24 h. No growth occurred in cured turkey during a 6-h cooling period. Furthermore, the fate of C. perfringens in cooked cured and uncured turkey held at refrigeration temperatures was investigated. C. perfringens levels decreased by 2.52, 2.54, and 2.75 log10 CFU/g in cured turkey held at 0.6, 4.4, and 10 degrees C, respectively, for 7 days. Finally, 48 production lots of ready-to-eat meat products that had deviated from FSIS guidelines were analyzed for C. perfringens levels. To date, 456 samples have been tested, and all but 25 (ranging from 100 to 710 CFU/g) of the samples contained C. perfringens at levels of <100 CFU/g. These results further support historical food safety data that suggest a very low public health risk associated with C. perfringens in commercially processed ready-to-eat meat and poultry products.  相似文献   

13.
Postprocessing contamination of cured meat products with Listeria monocytogenes during slicing and packaging is difficult to avoid, and thus, hurdles are needed to control growth of the pathogen during product storage. This study evaluated the influence of antimicrobials, included in frankfurter formulations, on L. monocytogenes populations during refrigerated (4 degrees C) storage of product inoculated (10(3) to 10(4) CFU/cm2) after peeling of casings and before vacuum packaging. Frankfurters were prepared to contain (wt/wt) sodium lactate (3 or 6%, as pure substance of a liquid, 60% wt/wt, commercial product), sodium acetate (0.25 or 0.5%), or sodium diacetate (0.25 or 0.5%). L. monocytogenes populations (PALCAM agar and Trypticase soy agar plus 0.6% yeast extract [TSAYE]) exceeded 10(6) CFU/cm2 in inoculated controls at 20 days of storage. Sodium lactate at 6% and sodium diacetate at 0.5% were bacteriostatic, or even bactericidal, throughout storage (120 days). At 3%, sodium lactate prevented pathogen growth for at least 70 days, while, in decreasing order of effectiveness, sodium diacetate at 0.25% and sodium acetate at 0.5 and 0.25% inhibited growth for 20 to 50 days. Antimicrobials had no effect on product pH, except for sodium diacetate at 0.5%, which reduced the initial pH by approximately 0.4 U. These results indicate that concentrations of sodium acetate currently permitted by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) (0.25%) or higher (0.5%) may control growth of L. monocytogenes for approximately 30 days, while currently permitted levels of sodium lactate (3%) and sodium diacetate (0.25%) may be inhibitory for 70 and 35 to 50 days, respectively. Moreover, levels of sodium lactate (6%) or sodium diacetate (0.5%) higher than those presently permitted by the USDA-FSIS may provide complete control at 4 degrees C of growth (120 days) of L. monocytogenes introduced on the surface of frankfurters during product packaging.  相似文献   

14.
The effect of NaCl concentration and cooling rate on the ability of Clostridium perfringens to grow from spore inocula was studied with the use of a process that simulates the industrial cooking and cooling of smoked boneless ham and beef roasts. NaCl was added to ground cooked hams A and B (which were commercially obtained) to obtain levels of 2.4, 3.1, 3.6, and 4.1% (wt/wt) and 2.8, 3.3, 3.8, and 4.3% (wt/wt), respectively, and to raw ground beef to obtain levels of 0, 1, 2, 3, and 4% (wt/wt). Ham C, a specially formulated, commercially prepared product, was supplemented with NaCl to obtain levels of 2.0, 2.5, 3.0, and 3.5%. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentrations of ca. 3 log10 CFU/g. Portions of meat (5 g each) were spread into thin layers (1 to 2 mm) in plastic bags, vacuum packaged, and stored at -40 degrees C. Thawed samples were heated at 75 degrees C for 20 min and subsequently cooled in a programmed water bath from 54.4 to < or = 8.5 degrees C in 15, 18, or 21 h. For the enumeration of C. perfringens, samples were plated on tryptose-sulfite-cycloserine agar and incubated in an anaerobic chamber at 37 degrees C for 48 h. Population densities for cooked ham and beef increased as cooling time increased, and NaCl exerted a strong inhibitory effect on the germination and outgrowth of C. perfringens. For beef, while 3% NaCl completely arrested growth, pathogen numbers increased by > or = 3, 5, and 5 log10 CFU/g in 15, 18, and 21 h, respectively, when the NaCl level was <2%. C. perfringens did not grow during cooling for 15, 18, or 21 h in ham samples containing > or = 3.1% NaCl. Results obtained in this study suggest that a 15-h cooling time for cooked ham, which is normally formulated to contain >2% NaCl, would yield an acceptable product (with an increase of <1 log10 CFU/g in the C. perfringens count); however, for beef containing <2% NaCl, C. perfringens populations may reach levels high enough to cause illness.  相似文献   

15.
Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts (calcium, potassium, and sodium) during exponential cooling of injected turkey product was evaluated. Injected turkey samples containing calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0, or 4.8% [w/w]), along with a control (product without lactate), were inoculated with a three-strain cocktail of C. perfringens spores to achieve a final spore population of 2.5 to 3.0 log CFU/g. The inoculated product was heat treated and exponentially cooled from 54.5 to 7.2 degrees C within 21, 18, 15, 12, 9, or 6.5 h. Cooling of injected turkey (containing no antimicrobials) resulted in C. perfringens germination and an outgrowth of 0.5, 2.4, 3.4, 5.1, 5.8, and 5.8 log CFU/g when exponentially cooled from 54.4 to 7.2 degrees C in 6.5, 12, 15, 18, and 21 h, respectively. The incorporation of antimicrobials (lactates), regardless of the type (Ca, Na, or K salts), inhibited the germination and outgrowth of C. perfringens spores at all the concentrations evaluated (1.0, 2.0, 3.0, and 4.8%) compared to the injected turkey without acetate (control). Increasing the concentrations of the antimicrobials resulted in a greater inhibition of the spore germination and outgrowth in the products. In general, calcium lactate was more effective in inhibiting the germination and outgrowth of C. perfringens spores at > or = 1.0% concentration than were sodium and potassium lactates. Incorporation of these antimicrobials in cooked, ready-to-eat turkey products can provide additionalprotection in controlling the germination and outgrowth of C. perfringens spores during cooling (stabilization).  相似文献   

16.
The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens at three different concentrations (0, 1.5 and 3% w/w) and at different temperatures (10, 15 and 20 degrees C for B. cereus and 15, 20 and 25 degrees C for C. perfringens) was investigated, using beef goulash as a model system for pasteurised vacuum-packaged convenience foods. Calcium lactate at a level of 3% reduced the pH values of the samples from 6.0 to 5.5. No B. cereus growth was observed at 10 degrees C, but after 7 days at an incubation temperature of 15 degrees C, cell number increased by 1 log cfu/g in the control samples. At this temperature, lactates were seen to be effective at inhibiting growth. Calcium lactate was more inhibitory than sodium lactate as the growth of B. cereus was inhibited at 1.5 and 3% concentrations at 20 degrees C, respectively. Growth of C. perfringens was arrested in the presence of 1.5% calcium lactate at all storage temperatures, whereas growth was inhibited by 3% sodium lactate only at 15 degrees C.  相似文献   

17.
A nonproteolytic, psychrotrophic Clostridium isolate, designated strain OMFRI1, was recovered from cook-in-bag turkey breasts (CIBTB) that displayed an intense pink discoloration and an off-odor following extended refrigerated storage. The viability of strain OMFRI1 in CIBTB containing sodium diacetate (at 0, 0.25, and 0.5%) and/or sodium lactate (at 0, 1.25, and 2.5%) was subsequently evaluated. Raw CIBTB batter was inoculated with 9 to 30 spores of strain OMFRI1 per g, vacuum packaged, cooked to an instantaneous internal temperature of 71.1 degrees C, chilled, and incubated at 4 degrees C for up to 22 weeks. In the absence of food-grade antimicrobial agents, spoilage (i.e., an off-odor) occurred within 6 weeks, and anaerobic plate counts reached 6.6 log10 CFU/g. The CIBTB containing sodium diacetate (0.25%) and that containing sodium lactate (1.25%) required 12 weeks for spoilage to occur and for anaerobic plate counts to reach 7.0 and 6.0 log10 CFU/g, respectively. When sodium diacetate (0.25%) and sodium lactate (1.25%) were used in combination, no off-odor was detected and anaerobic plate counts did not exceed 2.3 log10 CFU/g over 22 weeks of storage at 4 degrees C. In related experiments, sodium diacetate (at 0, 0.25, and 0.5%), sodium lactate (at 0, 1.25, and 2.5%), and combinations of both ingredients were evaluated in uninoculated CIBTB incubated at 25 degrees C for up to 22 days. In the absence of antimicrobial agents and in CIBTB containing sodium diacetate (0.5%), spoilage occurred within 8 days and anaerobic plate counts reached 6.8 and 6.6 log10 CFU/g, respectively. Samples of CIBTB containing sodium lactate (2.5%) showed signs of spoilage within 22 days, and anaerobic plate counts for these samples ranged from < or = 1.0 to 6.3 log10 CFU/g. In CIBTB containing both sodium lactate (2.5%) and sodium diacetate (0.25%), spoilage was not evident and anaerobic plate counts were < or = 1.0 log10 CFU/g within 22 days. These data validate the efficacy of sodium lactate and sodium diacetate in extending the shelf life of CIBTB.  相似文献   

18.
The effect of sodium lactate on thermal inactivation D- and z-values of Listeria monocytogenes and Salmonella was determined for chicken thigh and leg meat. At 55 to 70 degrees C, the D-value of L. monocytogenes in ground chicken thigh and leg meat with the addition of 4.8% sodium lactate (4.8 g sodium lactate per 100 g of meat) was 53 to 75% higher than that in the meat without sodium lactate. No significant difference was found for the D-values of Salmonella at 55 to 70 degrees C between the meat with and that without sodium lactate (4.8%. wt/wt). The z-values of both L. monocytogenes and Salmonella were not affected by sodium lactate (4.8%). The results from this study are useful for predicting thermal process lethality of L. montocytogenes and Salmonella in formulated chicken thigh and leg meat products.  相似文献   

19.
The ability of selected generally recognized as safe (GRAS) chemical preservatives to reduce populations or inhibit growth of Listeria monocytogenes on chicken luncheon meat was evaluated. Slices of luncheon meat were treated by evenly spraying onto their surfaces 0.2 ml of a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at one of three different concentrations (15, 20, or 25% [wt/vol]). Each slice was then surface inoculated with a five-strain mixture of 10(5) CFU of L. monocytogenes per ml, held at 4, 13, or 22 degrees C, and assayed for L. monocytogenes immediately after inoculation and at 3, 7, 10, and 14 days of storage. Initial reductions of L. monocytogenes populations ranged from 0.78 to 1.32 log10 CFU g(-1) at day 0 for sodium benzoate- or sodium diacetate-treated meat, whereas reductions for the sodium propionate or potassium sorbate treatments were only 0.14 to 0.36 log10 CFU g(-1). After 14 days of storage at 4 degrees C, L. monocytogenes populations on all treated slices were 1.5 to 3 log10 CFU g(-1) less than on the untreated slices. At 13 degrees C and after 14 days of storage, L. monocytogenes populations were 3.5 and 5.2 log10 CFU g(-1) less on luncheon meat slices treated with 25% sodium benzoate or 25% sodium diacetate, respectively, and ca. 2 log10 CFU g(-1) less when treated with 25% sodium propionate or 25% potassium sorbate than on untreated control slices. Only sodium diacetate was highly inhibitory to L. monocytogenes on meat slices held at 22 degrees C for 7 days or longer. Untreated luncheon meat held at 22 degrees C was visibly spoiled within 10 days, whereas there was no evidence of visible spoilage on any treated luncheon meat at 14 days of storage.  相似文献   

20.
Inhibition of Clostridium perfringens spore germination and outgrowth during abusive chilling regimes was investigated by the incorporation of lactates of calcium (CaL), potassium (KL) and sodium (NaL) in injected pork. Lactates (Ca, K, or Na) were incorporated into injected pork samples at four different concentrations (1.0%, 2.0%, 3.0%, and 4.8%), along with a no-lactate control. A three-strain cocktail of C. perfringens spores was inoculated into the product (injected pork) to obtain a final spore population of ca. 2.0-2.5 log(10)CFU/g. Chilling of injected pork (control) from 54.4 to 7.2 degrees C within 6.5, 9, 12, 15, 18, and 21 h exponential chill rates resulted in C. perfringens population increases of 0.49, 2.40, 4.02, 5.03, 6.24, and 6.30 log(10)CFU/g, respectively. Addition of CaL at 1.0% or KL and NaL > or = 2.0% to injected pork was able to control C. perfringens germination and outgrowth to <1 logCFU/g, meeting the USDA-FSIS performance standard. However, extension of chilling rates beyond 9.0 h (up to 21 h) required addition of CaL ( > or = 2.0%), KL or NaL ( > or = 3.0%) to meet the stabilization performance standard. In general, CaL was more effective compared to KL or NaL for all the chilling regimes, in reducing the potential risk of C. perfringens germination and outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号