共查询到20条相似文献,搜索用时 15 毫秒
1.
《Expert systems with applications》2014,41(10):4505-4512
Node-list and N-list, two novel data structure proposed in recent years, have been proven to be very efficient for mining frequent itemsets. The main problem of these structures is that they both need to encode each node of a PPC-tree with pre-order and post-order code. This causes that they are memory-consuming and inconvenient to mine frequent itemsets. In this paper, we propose Nodeset, a more efficient data structure, for mining frequent itemsets. Nodesets require only the pre-order (or post-order code) of each node, which makes it saves half of memory compared with N-lists and Node-lists. Based on Nodesets, we present an efficient algorithm called FIN to mining frequent itemsets. For evaluating the performance of FIN, we have conduct experiments to compare it with PrePost and FP-growth1, two state-of-the-art algorithms, on a variety of real and synthetic datasets. The experimental results show that FIN is high performance on both running time and memory usage. 相似文献
2.
3.
Frequent itemset mining is an important problem in the data mining area with a wide range of applications. Many decision support systems need to support online interactive frequent itemset mining, which is a challenging task because frequent itemset mining is a computation intensive repetitive process. One solution is to precompute frequent itemsets. In this paper, we propose a compact disk-based data structure—CFP-tree to store precomputed frequent itemsets on a disk to support online mining requests. The CFP-tree structure effectively utilizes the redundancy in frequent itemsets to save space. The compressing ratio of a CFP-tree can be as high as several thousands or even higher. Efficient algorithms for retrieving frequent itemsets from a CFP-tree, as well as efficient algorithms to construct and maintain a CFP-tree, are developed. Our performance study demonstrates that with a CFP-tree, frequent itemset mining requests can be responded to promptly. 相似文献
4.
Mining frequent itemsets is an essential problem in data mining and plays an important role in many data mining applications. In recent years, some itemset representations based on node sets have been proposed, which have shown to be very efficient for mining frequent itemsets. In this paper, we propose DiffNodeset, a novel and more efficient itemset representation, for mining frequent itemsets. Based on the DiffNodeset structure, we present an efficient algorithm, named dFIN, to mining frequent itemsets. To achieve high efficiency, dFIN finds frequent itemsets using a set-enumeration tree with a hybrid search strategy and directly enumerates frequent itemsets without candidate generation under some case. For evaluating the performance of dFIN, we have conduct extensive experiments to compare it against with existing leading algorithms on a variety of real and synthetic datasets. The experimental results show that dFIN is significantly faster than these leading algorithms. 相似文献
5.
In recent years, data stream mining has become an important research topic. With the emergence of new applications, the data we process are not again static, but the continuous dynamic data stream. Examples include network traffic analysis, Web click stream mining, network intrusion detection, and on-line transaction analysis. In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW, to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding window model. 相似文献
6.
A data stream is a massive and unbounded sequence of data elements that are continuously generated at a fast speed. Compared with traditional approaches, data mining in data streams is more challenging since several extra requirements need to be satisfied. In this paper, we propose a mining algorithm for finding frequent itemsets over the transactional data stream. Unlike most of existing algorithms, our method works based on the theory of Approximate Inclusion–Exclusion. Without incrementally maintaining the overall synopsis of the stream, we can approximate the itemsets’ counts according to certain kept information and the counts bounding technique. Some additional techniques are designed and integrated into the algorithm for performance improvement. Besides, the performance of the proposed algorithm is tested and analyzed through a series of experiments. 相似文献
7.
A novel hash-based approach for mining frequent itemsets over data streams requiring less memory space 总被引:1,自引:1,他引:1
In recent times, data are generated as a form of continuous data streams in many applications. Since handling data streams
is necessary and discovering knowledge behind data streams can often yield substantial benefits, mining over data streams
has become one of the most important issues. Many approaches for mining frequent itemsets over data streams have been proposed.
These approaches often consist of two procedures including continuously maintaining synopses for data streams and finding
frequent itemsets from the synopses. However, most of the approaches assume that the synopses of data streams can be saved
in memory and ignore the fact that the information of the non-frequent itemsets kept in the synopses may cause memory utilization
to be significantly degraded. In this paper, we consider compressing the information of all the itemsets into a structure
with a fixed size using a hash-based technique. This hash-based approach skillfully summarizes the information of the whole
data stream by using a hash table, provides a novel technique to estimate the support counts of the non-frequent itemsets,
and keeps only the frequent itemsets for speeding up the mining process. Therefore, the goal of optimizing memory space utilization
can be achieved. The correctness guarantee, error analysis, and parameter setting of this approach are presented and a series
of experiments is performed to show the effectiveness and the efficiency of this approach. 相似文献
8.
9.
Mining frequent itemsets has emerged as a fundamental problem in data mining and plays an essential role in many important data mining tasks.In this paper,we propose a novel vertical data representation called N-list,which originates from an FP-tree-like coding prefix tree called PPC-tree that stores crucial information about frequent itemsets.Based on the N-list data structure,we develop an efficient mining algorithm,PrePost,for mining all frequent itemsets.Efficiency of PrePost is achieved by the following three reasons.First,N-list is compact since transactions with common prefixes share the same nodes of the PPC-tree.Second,the counting of itemsets’ supports is transformed into the intersection of N-lists and the complexity of intersecting two N-lists can be reduced to O(m + n) by an efficient strategy,where m and n are the cardinalities of the two N-lists respectively.Third,PrePost can directly find frequent itemsets without generating candidate itemsets in some cases by making use of the single path property of N-list.We have experimentally evaluated PrePost against four state-of-the-art algorithms for mining frequent itemsets on a variety of real and synthetic datasets.The experimental results show that the PrePost algorithm is the fastest in most cases.Even though the algorithm consumes more memory when the datasets are sparse,it is still the fastest one. 相似文献
10.
In this paper, we study the incremental update of Frequent Closed Itemsets (FCIs) over a sliding window in a high-speed data stream. We propose the notion of semi-FCIs, which is to progressively increase the minimum support threshold for an itemset as it is retained longer in the window, thereby drastically reducing the number of itemsets that need to be maintained and processed. We explore the properties of semi-FCIs and observe that a majority of the subsets of a semi-FCI are not semi-FCIs and need not be updated. This finding allows us to devise an efficient algorithm, IncMine, that incrementally updates the set of semi-FCIs over a sliding window. We also develop an inverted index to facilitate the update process. Our empirical results show that IncMine achieves significantly higher throughput and consumes less memory than the state-of-the-art streaming algorithms for mining FCIs and FIs. IncMine also attains high accuracy of 100% precision and over 93% recall. 相似文献
11.
Komate Amphawan Philippe Lenca Athasit Surarerks 《Expert systems with applications》2012,39(2):1924-1936
Temporal regularity of itemset appearance can be regarded as an important criterion for measuring the interestingness of itemsets in several applications. A frequent itemset can be said to be regular-frequent in a database if it appears at a regular period. Therefore, the problem of mining a complete set of regular-frequent itemsets requires the specification of a support and a regularity threshold. However, in practice, it is often difficult for users to provide an appropriate support threshold. In addition, the use of a support threshold tends to produce a large number of regular-frequent itemsets and it might be better to ask for the number of desired results. We thus propose an efficient algorithm for mining top-k regular-frequent itemsets without setting a support threshold. Based on database partitioning and support estimation techniques, the proposed algorithm also uses a best-first search strategy with only one database scan. We then compare our algorithm with the state-of-the-art algorithms for mining top-k regular-frequent itemsets. Our experimental studies on both synthetic and real data show that our proposal achieves high performance for small and large values of k. 相似文献
12.
《Expert systems with applications》2014,41(6):2914-2938
Multilevel knowledge in transactional databases plays a significant role in our real-life market basket analysis. Many researchers have mined the hierarchical association rules and thus proposed various approaches. However, some of the existing approaches produce many multilevel and cross-level association rules that fail to convey quality information. From these large number of redundant association rules, it is extremely difficult to extract any meaningful information. There also exist some approaches that mine minimal association rules, but these have many shortcomings due to their naïve-based approaches. In this paper, we have focused on the need for generating hierarchical minimal rules that provide maximal information. An algorithm has been proposed to derive minimal multilevel association rules and cross-level association rules. Our work has made significant contributions in mining the minimal cross-level association rules, which express the mixed relationship between the generalized and specialized view of the transaction itemsets. We are the first to design an efficient algorithm using a closed itemset lattice-based approach, which can mine the most relevant minimal cross-level association rules. The parent–child relationship of the lattices has been exploited while mining cross-level closed itemset lattices. We have extensively evaluated our proposed algorithm’s efficiency using a variety of real-life datasets and performing a large number of experiments. The proposed algorithm has outperformed the existing related work significantly during the pervasive performance comparison. 相似文献
13.
Chedy Raïssi Pascal Poncelet Maguelonne Teisseire 《Journal of Intelligent Information Systems》2007,28(1):23-36
Mining frequent patterns on streaming data is a new challenging problem for the data mining community since data arrives sequentially
in the form of continuous rapid streams. In this paper we propose a new approach for mining itemsets. Our approach has the
following advantages: an efficient representation of items and a novel data structure to maintain frequent patterns coupled
with a fast pruning strategy. At any time, users can issue requests for frequent itemsets over an arbitrary time interval.
Furthermore our approach produces an approximate answer with an assurance that it will not bypass user-defined frequency and
temporal thresholds. Finally the proposed method is analyzed by a series of experiments on different datasets. 相似文献
14.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率. 相似文献
15.
A false negative approach to mining frequent itemsets from high speed transactional data streams 总被引:2,自引:0,他引:2
Mining frequent itemsets from transactional data streams is challenging due to the nature of the exponential explosion of itemsets and the limit memory space required for mining frequent itemsets. Given a domain of I unique items, the possible number of itemsets can be up to 2I − 1. When the length of data streams approaches to a very large number N, the possibility of an itemset to be frequent becomes larger and difficult to track with limited memory. The existing studies on finding frequent items from high speed data streams are false-positive oriented. That is, they control memory consumption in the counting processes by an error parameter ?, and allow items with support below the specified minimum support s but above s − ? counted as frequent ones. However, such false-positive oriented approaches cannot be effectively applied to frequent itemsets mining for two reasons. First, false-positive items found increase the number of false-positive frequent itemsets exponentially. Second, minimization of the number of false-positive items found, by using a small ?, will make memory consumption large. Therefore, such approaches may make the problem computationally intractable with bounded memory consumption. In this paper, we developed algorithms that can effectively mine frequent item(set)s from high speed transactional data streams with a bound of memory consumption. Our algorithms are based on Chernoff bound in which we use a running error parameter to prune item(set)s and use a reliability parameter to control memory. While our algorithms are false-negative oriented, that is, certain frequent itemsets may not appear in the results, the number of false-negative itemsets can be controlled by a predefined parameter so that desired recall rate of frequent itemsets can be guaranteed. Our extensive experimental studies show that the proposed algorithms have high accuracy, require less memory, and consume less CPU time. They significantly outperform the existing false-positive algorithms. 相似文献
16.
Discovery of maximum length frequent itemsets 总被引:1,自引:0,他引:1
The use of frequent itemsets has been limited by the high computational cost as well as the large number of resulting itemsets. In many real-world scenarios, however, it is often sufficient to mine a small representative subset of frequent itemsets with low computational cost. To that end, in this paper, we define a new problem of finding the frequent itemsets with a maximum length and present a novel algorithm to solve this problem. Indeed, maximum length frequent itemsets can be efficiently identified in very large data sets and are useful in many application domains. Our algorithm generates the maximum length frequent itemsets by adapting a pattern fragment growth methodology based on the FP-tree structure. Also, a number of optimization techniques have been exploited to prune the search space. Finally, extensive experiments on real-world data sets validate the proposed algorithm. 相似文献
17.
Given a large set of data, a common data mining problem is to extract the frequent patterns occurring in this set. The idea presented in this paper is to extract a condensed representation of the frequent patterns called disjunction-bordered condensation (DBC), instead of extracting the whole frequent pattern collection. We show that this condensed representation can be used to regenerate all frequent patterns and their exact frequencies. Moreover, this regeneration can be performed without any access to the original data. Practical experiments show that the DBCcan be extracted very efficiently even in difficult cases and that this extraction and the regeneration of the frequent patterns is much more efficient than the direct extraction of the frequent patterns themselves. We compared the DBC with another representation of frequent patterns previously investigated in the literature called frequent closed sets. In nearly all experiments we have run, the DBC have been extracted much more efficiently than frequent closed sets. In the other cases, the extraction times are very close. 相似文献
18.
This paper proposes an efficient method, the frequent items ultrametric trees (FIUT), for mining frequent itemsets in a database. FIUT uses a special frequent items ultrametric tree (FIU-tree) structure to enhance its efficiency in obtaining frequent itemsets. Compared to related work, FIUT has four major advantages. First, it minimizes I/O overhead by scanning the database only twice. Second, the FIU-tree is an improved way to partition a database, which results from clustering transactions, and significantly reduces the search space. Third, only frequent items in each transaction are inserted as nodes into the FIU-tree for compressed storage. Finally, all frequent itemsets are generated by checking the leaves of each FIU-tree, without traversing the tree recursively, which significantly reduces computing time. FIUT was compared with FP-growth, a well-known and widely used algorithm, and the simulation results showed that the FIUT outperforms the FP-growth. In addition, further extensions of this approach and their implications are discussed. 相似文献
19.
Mining top-K frequent itemsets from data streams 总被引:1,自引:0,他引:1
Frequent pattern mining on data streams is of interest recently. However, it is not easy for users to determine a proper frequency
threshold. It is more reasonable to ask users to set a bound on the result size. We study the problem of mining top K frequent itemsets in data streams. We introduce a method based on the Chernoff bound with a guarantee of the output quality
and also a bound on the memory usage. We also propose an algorithm based on the Lossy Counting Algorithm. In most of the experiments
of the two proposed algorithms, we obtain perfect solutions and the memory space occupied by our algorithms is very small.
Besides, we also propose the adapted approach of these two algorithms in order to handle the case when we are interested in
mining the data in a sliding window. The experiments show that the results are accurate.
相似文献
Ada Wai-Chee FuEmail: |
20.
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable (Song, Yang, & Xu, 2008) approaches have been applied for mining frequent itemsets and results are significant. However, they always use a fixed size of Bit-Vector for each item (equal to number of transactions in a database). It leads to consume more memory for storage Bit-Vectors and the time for computing the intersection among Bit-Vectors. Besides, they only apply for mining frequent itemsets, algorithm for mining FCI based on BitTable is not proposed. This paper introduces a new method for mining FCI from transaction databases. Firstly, Dynamic Bit-Vector (DBV) approach will be presented and algorithms for fast computing the intersection between two DBVs are also proposed. Lookup table is used for fast computing the support (number of bits 1 in a DBV) of itemsets. Next, subsumption concept for memory and computing time saving will be discussed. Finally, an algorithm based on DBV and subsumption concept for mining frequent closed itemsets fast is proposed. We compare our method with CHARM, and recognize that the proposed algorithm is more efficient than CHARM in both the mining time and the memory usage. 相似文献