首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
采用两条支路分集接收的相关瑞利衰落信道容量   总被引:5,自引:0,他引:5  
李光球 《电子学报》2003,31(7):1018-1021
本文研究采用两条支路最大比合并(MRC)或选择合并(SC)分集接收的相关瑞利衰落信道理论容量推导恒定发射功率自适应M进制正交幅度调制(M-QAM)的频谱效率,并将它们与独立同分布瑞利信道理论容量进行比较,其结果对收发信机之间无视距分量路径、接收机上分集天线之间的距离小于半个波长的无线通信系统设计具有指导作用.  相似文献   

2.
A performance analysis of two hybrid selective combining/maximal ratio combining (SC/MRC) diversity receivers over Nakagami-m (1960) fading channels with a flat multipath intensity profile is presented and numerically compared with that of the conventional SC and MRC schemes. Numerical results for particular cases of interest show that the bit error rate (BER) degradation arising from the use of hybrid SC/MRC instead of MRC is independent of the average signal-to-noise ratio (SNR) regardless of the severity of the fading and that MRC provides a higher rate of improvement than the hybrid SC/MRC as the severity of fading decreases  相似文献   

3.
该文推导了存在信道估计误差的DS-CDMA系统在多径Rayleigh衰落信道中的误码率。数值计算结果表明当实际系统中的信道估计存在误差并且信道多径功率不等时,在假设相等噪声功率和理想信道估计下得到的传统最大比合并方法因无法输出最大的信噪比而性能明显下降。  相似文献   

4.
In this paper, the performance of an underlay cognitive radio system with random mobility and imperfect channel state information (CSI) is investigated. The mobile user (MU) utilises maximum ratio combining (MRC) and selection combining (SC) diversity techniques as signal reception to improve the quality of received signal‐to‐noise ratio (SNR). Under the Rayleigh fading, random waypoint mobility model is employed to characterised the effect of the MU random mobility on the system performance. Thus, novel probability density function (PDF) and cumulative distribution function (CDF) for the two considered diversity techniques are derived. Through these, the outage probability and average bit error rate (ABER) closed‐form analytical expressions are then obtained to quantify the system performance under the MRC and SC schemes. The results illustrate the effect of imperfect CSI, user mobility which is characterised by pathloss and the network topology on the system performance. Also, the results depict that MRC offers the system better performance compared with SC under the same system conditions. The accuracy of the derived analytical expressions is verified through Monte‐Carlo simulations.  相似文献   

5.
Generalized selection combining (GSC), in which the best Lc out of L independent diversity channels are linearly combined has been previously proposed and analyzed for Rayleigh fading channels. GSC is a less complex alternative to maximal ratio combining (MRC) that provides a performance gain over traditional selection combining (SC). Both MRC and SC are special cases of CSC, with Lc=L and Lc=1, respectively. We show that CSC also dramatically reduces the impact of switching rate constraints, whereby a selection must be held for the duration of a packet  相似文献   

6.
Cooperative diversity is a promising technology for future wireless networks. In this paper, we derive exact closed-form expressions for the average bit error rate (BER) and outage probability (Pout) for differential equal gain combining (EGC) in cooperative diversity networks. The considered network uses amplify-and-forward relaying over independent non-identical Nakagami-m fading channels. The performance metrics (BER and Pout) are derived using the moment generating function (MGF) method. Furthermore, we found (in terms of MGF) the SNR moments, the average signal-to-noise ratio (SNR) and amount of fading. Numerical results show that the differential EGC can bene?t from the path-loss reduction and outperform the traditional multiple-input single output (MISO) system. Also, numerical results show that the performance of the differential EGC is comparable to the maximum ratio combining (MRC) performance.  相似文献   

7.
We study the effect of imperfect channel estimation (ICE) on the performance of M-ary phase shift keying (M-PSK) with maximum ratio combining (MRC) in generalized Rician fading channels. First, we derive the error probability formulas for M-PSK with MRC and ICE in arbitrary Rician fading channels. Furthermore, we derive the effective receiver output signal-to-noise ratio (SNR) statistics and the outage probability, and analytically quantify the average SNR loss of M-PSK caused by ICE, assuming independent diversity branches. Finally, we point out a major approximation in a popular approach used in the literature to evaluate the adverse effect of ICE.  相似文献   

8.
The statistical characteristics of the trivariate and quadrivariate Weibull fading distribution with arbitrary correlation, non-identical fading parameters and average powers are analytically studied. Novel expressions for important joint statistics are derived using the Weibull power transformation. These expressions are used to evaluate the performance of selection combining (SC) and maximal ratio combining (MRC) diversity receivers in the presence of such fading channels.  相似文献   

9.
双瑞利衰落信道下最大比合并性能研究   总被引:2,自引:0,他引:2  
基于接收信噪比的统计特性,研究了双瑞利衰落条件下各分集支路衰落幅度不平衡时最大比合并MRC接收系统的差错和分集性能。采用基于矩生成函数的方法导出了涵盖多种调制方式的平均误符号率ASER的通用公式,并得到了其Chernoff一致界。仿真结果表明:双瑞利衰落下采用MRC接收技术可以大大减小传输系统的ASER且能获得与瑞利衰落时相同的渐进分集增益,但在实际可接收到的信噪比范围内可获得的分集增益与满分集增益具有明显的差距;相对于单支路接收系统,双瑞利衰落下的MRC系统可近似得到满的相对分集增益。  相似文献   

10.
We investigate the effect of fading correlation and branch gain imbalance on the average output signal-to-noise ratio (SNR) in conjunction with dual selection combining (SC). In particular, starting with the moment generating function of the dual SC output SNR, we derive a closed-form expression for the average output SNR in the general case of correlated unbalanced Nakagami-m fading channels. We then show that the generic result can be further simplified for the special cases of Rayleigh fading, uncorrelated branches, and/or equal average SNRs. Because of their simple form, the given expressions readily allow numerical evaluation for cases of practical interest  相似文献   

11.
The paper examines the impact of Gaussian distributed weighting errors (in the channel gain estimates used for coherent combination) on both the output statistics of a hybrid selection/maximal-ratio (SC/MRC) receiver and the degradation of the average symbol-error rate (ASER) performance as compared with the ideal case. New expressions are derived for the probability density function, cumulative distribution function and moment generating function (MGF) of the coherent hybrid SC/MRC combiner output signal-to-noise ratio (SNR). The MGF is then used to derive exact, closed-form, ASER expressions for binary and M-ary modulations in conjunction a nonideal hybrid SC/MRC receiver in a Rayleigh fading environment. Results for both selection combining (SC) and maximal-ratio combining (MRC) are obtained as limiting cases. Additionally, the effect of the weighting errors on both the outage rate of error probability and the average combined SNR is investigated. These analytical results provide insights into the tradeoff between diversity gain and combination losses, in concert with increasing orders of diversity branches in an energy-sharing communication system  相似文献   

12.
New exact expressions involving hypergeometric functions are derived for the symbol-error rate (SER) of M-ary quadrature amplitude modulation (MQAM) for L branch diversity reception in Rayleigh fading and additive white Gaussian noise (AWGN). The diversity combining techniques considered are maximum ratio combining (MRC) and selection combining (SC). MRC with identical channels and dissimilar channels are analyzed  相似文献   

13.
Closed form expressions for the average probability of packet error (PPE) are presented for no diversity, maximum ratio combining (MRC), selection combining (SC) and switch and stay combining (SSC) diversity schemes. The average PPE for the no diversity case is obtained in two alternative expressions assuming arbitrarily correlated Nakagami and Rician fading channels. For the MRC case, L diversity branches are considered and the channel samples are assumed to follow Nakagami distribution and to be arbitrarily correlated in both time and space. For the SC diversity scheme with L diversity branches, two bounds on the average PPE are derived for both slow and fast fading channels. The average PPE in this case is obtained in an infinite integral form for Nakagami channels while it is reduced to a closed form expression for the Rayleigh case. The average PPE is also derived in the case of SSC diversity with dual branches for both slow and fast Rayleigh fading channels. The new formulas are applicable for all modulation schemes where the conditional probability of error has an exponential dependence on the signal‐to‐noise ratio. The average PPE is then used to obtain a modified expression for the throughput for network protocols. In general, the diversity gain exhibits a little diminishing effect as the number of diversity branches increases. In addition, the system is found to be more sensitive to the space correlation than to the time correlation. The effects of different system parameters and diversity schemes are studied and discussed. Specific figures about the system performance are also provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Cooperative communication is a recently popular concept which allows single-antenna devices to benefit from spatial diversity. The performance analysis of cooperative communication using generalized selection combining (GSC) over independent not necessarily identically distributed Nakagami-m fading channels is presented and compared with that of the conventional maximal ratio combining (MRC) and selection combining (SC) schemes. With the aid of Padé approximants theory, new closed-form expression is derived for the moment-generating function (MGF) of the GSC output signal-to-noise ratio (SNR). MGF is an important tool for researching the system performance. In this paper, the average bit-error probability is accurately approximated using the well-known MGF approach. Numerical results show that the proposed mathematical analysis is accurate and that for the more severe fading cases, the GSC receivers are closer to the optimum MRC receivers.  相似文献   

15.
In this paper, we present the performance of multi-antenna selective combining decode-and-forward (SC-DF) relay networks over independent but non-identical Nakagami-m fading channels with imperfect channel estimation. The outage probability, moment generating function (MGF) and symbol error probability (SEP) will be derived in closed-form using the SNR statistical characteristics. To make the analysis trackable, we have derived the MGF and SEP for integer values of fading severity, m. Also, to make the relations more simple, we develop high signal to noise ratio (SNR) analysis for the performance metrics of our system. Subsequently, we propose optimal and adaptive power allocation algorithms along with the equal power allocation method. Finally, for comparison with analytical formulas, we perform some Monte-Carlo simulations.  相似文献   

16.
On diversity reception over fading channels with impulsive noise   总被引:2,自引:0,他引:2  
In this paper, we analyze the performance of different diversity combining techniques over fading channels with impulsive noise. We use Middleton's Class A model for the noise distribution and adopt two noise models, which assume dependent and independent noise components on each branch. We systematically analyze the performance of maximum ratio combing (MRC), equal gain combining (EGC), selection combining (SC), and post-detection combining (PDC) under these impulsive noise models, and derive insightful lower and upper bounds. We show that even under impulsive noise, the diversity order is retained for each combining scheme. However, we also show that under both models, there is a fundamental tradeoff between diversity gain and coding gain. Under the independent noise model, PDC is shown to combat impulsive noise more effectively than MRC, EGC, and SC. Our simulation results also corroborate our analysis.  相似文献   

17.
Ascertaining the importance of the dual selection combining (SC) receivers and the suitability of the Weibull model to describe mobile fading channels, we study the performance of a dual SC receiver over correlated Weibull fading channels with arbitrary parameters. Exact closed-form expressions are derived for the probability density function, the cumulative distribution function, and the moments of the output signal-to-noise ratio (SNR). Important performance criteria, such as average output SNR, amount of fading, outage probability, and average bit-error probability for several modulation schemes are studied. Furthermore, for these performance criteria, novel closed-form analytical expressions are derived. The proposed analysis is complemented by various performance evaluation results, including the effects of the input SNR's unbalancing, fading severity, and fading correlation on the overall system's performance. Computer simulation results have verified the validity and accuracy of the proposed analysis.  相似文献   

18.
In this paper, we investigate the outage performance of transmit antenna selection (TAS) and maximal-ratio combining (MRC) in dual hop full-duplex (FD) amplify-and-forward (AF) relay network over Rayleigh fading channels. In the analysis, Rayleigh faded multiple co-channel interferers (CCIs) are also taken into account at the relay. In the network, source and destination are equipped with multiple antennas, and relay is equipped with one receive and one transmit antennas, respectively and source-destination link is not available. While the TAS is applied at the source without considering residual self-interference (RSI) effect, received signals at the destination are combined based on the MRC technique. For the analysis, we consider three approaches at the relay. In the first, we consider the received signal at the relay is corrupted by faded RSI and noise, in the second one, the RSI is considered as non-fading. In the last one, the noise is neglected. In all cases, the relay suffers from multiple Rayleigh faded CCIs. Outage probability (OP) expression related to all the cases is derived and obtained in single integral forms in case of the faded/non-fading RSI and in closed form in case of the noise neglected approach. Moreover, we also find asymptotic OPs and conduct effective diversity order analysis. The analytical results are verified by the Monte Carlo simulations. Results show that TAS decreases error floor at high signal-to-noise ratio (SNR) region and MRC provides diversity gain at low SNR region. In addition, approaches II and III are good approximations to approach I at low and high SNR regions, respectively.  相似文献   

19.
In this paper, we consider the problem of frequency acquisition synchronization by using multiple antennas over wireless fading channels. We introduce frequency synchronization with different combining schemes including space diversity and time diversity. Their performance is estimated for a Rayleigh fading channel with an analysis both theoretically and by simulation. We investigate the relationship between the mean squared error (MSE) and the average signal‐to‐noise ratio (SNR) for combining of different blocks and antennas. Both the carrier frequency offset and the sampling frequency offset are estimated when multiple antennas are utilized for signal transmission. The estimation with maximum ratio combining (MRC) scheme is presented in detail, and the estimation with selection combining scheme and equal gain combining scheme are introduced briefly. The simulation results explicitly show that the performance of the frequency acquisition synchronization with MRC scheme is better than that of others and that the MSE at low SNR is not very close to the Cramér–Rao low bound in multiblock combining frequency synchronization. Furthermore, the results address that in order to improve the performance, the total number of receive antennas will be increased exponentially. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The spectral efficiency results for different adaptive transmission schemes over correlated diversity branches with unequal average signal to noise ratio (SNR) obtained so far in literature are not applicable for Nakagami-0.5 fading channels. In this paper, we investigate the effect of fade correlation and level of imbalance in the branch average received SNR on the spectral efficiency of Nakagami-0.5 fading channels in conjunction with dual-branch selection combining (SC). This paper derived the expressions for the spectral efficiency over correlated Nakagami-0.5 fading channels with unequal average received SNR. This spectral efficiency is evaluated under different adaptive transmission schemes using dual-branch SC diversity scheme. The corresponding expressions for Nakagami-0.5 fading are considered to be the expressions under worst fading conditions. Finally, numerical results are provided to illustrate the spectral efficiency degradation due to channel correlation and unequal average received SNR between the different combined branches under different adaptive transmission schemes. It has been observed that optimal simultaneous power and rate adaptation (OPRA) scheme provides improved spectral efficiency as compared to truncated channel inversion with fixed rate (TIFR) and optimal rate adaptation with constant transmit power (ORA) schemes under worst case fading scenario. It is very interesting to observe that TIFR scheme is always a better choice over ORA scheme under correlated Nakagami-0.5 fading channels with unequal average received SNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号