首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用HYSIM软件系统 ,采用平推流与全混流两种进料方式的渗透汽化工艺 ,对醚化后C4产物分离的蒸馏 -渗透汽化集成过程进行模拟 ,计算了回流比、侧线出料量、侧线进出口位置、进料及返回液中甲醇含量等操作条件对产物的影响。结果表明 ,平推流进料所需膜面积仅为全混流的 64 %~ 90 %。当蒸馏段侧线渗透汽化装置中脱除的甲醇与进料甲醇等量时 ,塔顶产品不经水洗就可使甲醇摩尔分数降低到 1× 10 - 4 以下  相似文献   

2.
萃取抽提C_(10)重芳烃中均四甲苯的萃取剂筛选   总被引:1,自引:0,他引:1  
采用萃取精馏法分离C10重芳烃中的关键组分,根据萃取剂选择条件,初步确定选用环丁砜、邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、甘油和二苯胺为萃取剂;建立了汽液相平衡测定装置,测定了关键组分间的相对挥发度,确定邻苯二甲酸二辛酯为萃取剂;用AspenPlus软件进行模拟计算,在较佳模拟条件(T1塔板数为50块、原料进料位置为第18块塔板、回流比为5;T2塔板数为40块、侧线进料位置为第20块塔板、萃取剂进料位置为第10块塔板、萃取比(萃取剂与进料的体积比)为3.0、回流比为5;原料进料量为0.1L/h)下,可分别获得质量分数为60.3%和37.4%的均四甲苯和偏四甲苯,为均四甲苯结晶和偏四甲苯异构化提供原料。  相似文献   

3.
利用分隔壁精馏塔实验室小试装置对苯、甲苯、二甲苯三组分芳烃混合物的分离进行了初步探索,考察了进料组成、进料速度、回流比、分配比等因素对分离效果的影响。结果表明,当分隔壁精馏塔进料中甲苯的体积分数为60%、苯和二甲苯的含量相当、进料速度为1.1mL/min、分配比为1:2、回流比为6:1时,分离效果最佳,此时塔顶采出苯的质量分数达到94.9%,侧线采出甲苯的质量分数为96.4%,塔釜中不含轻组分。  相似文献   

4.
为解决乙酸装置脱水塔的腐蚀问题,建立了乙酸生产分离过程的数学模型,对脱水塔的操作工况进行了模拟分析。结果表明,甲酸富集区的形状和位置与全塔的物料分割比率、回流比及进料和侧线位置有关。通过增大侧线抽出量,可降低富集区甲酸和氯离子的浓度,减缓设备的腐蚀速率,延长设备使用寿命。  相似文献   

5.
为解决中国石油兰州石化公司12万t/a碳四抽提丁二烯装置生产中出现开车周期短、塔压差波动、中控及最终产品质量波动的问题,对装置碳四原料进料状态、萃取剂、回流比、物料平衡、二萃塔侧线、抽出量、温度等影响因素进行分析,并提出了相应的对策。结果表明,碳四原料采用气液相混合进料的方式并控制乙腈中二聚物和水含量有助于装置稳定生产。当一萃塔腈烃比为(6.5±0.5),回流比为(3.0±0.3),二萃塔腈烃比为3,回流比为(2.0±0.3)时,萃取精馏塔的分离效果较佳。二萃塔侧线温度控制在(137.0±1.5)℃,才能保证侧线抽出的乙烯基乙炔体积分数为23%~32%。  相似文献   

6.
用分隔壁精馏塔对苯类混合物分离的工艺分析   总被引:2,自引:0,他引:2  
为证明分隔壁精馏塔比普通精馏塔在分离效率、能耗等方面的优势,文中以苯、甲苯和二甲苯的混合物为研究对象,采用Aspen Plus工程模拟软件,进行模拟计算。结果表明:进料位置、回流比、侧线采出位置、液体分配比均对分离效果产生影响。  相似文献   

7.
最佳回流比和塔板数的新计算方法   总被引:2,自引:0,他引:2  
本文引入一个半理论的汽液平衡关联式,引进一种不需试差的快速逐板计算法,模拟理论塔板数与回流比间的关系,提出一种不同物系的最佳回流比及相应塔板数的通用计算法,考核进料组成和分离程度对最佳回流比的影喻,本文所提的方法适用于双组份体系  相似文献   

8.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

9.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

10.
以乙二醇为萃取剂,利用Aspen Plus软件中的Rad Frac模块和NRTL物性方法对叔丁醇-乙醇-水混合溶液的常规萃取和隔壁塔萃取分离工艺流程进行了模拟与优化,分别考察了各塔回流比、塔板数、原料进料位置、萃取剂用量及进料位置、侧线采出位置等因素对分离效果的影响。结果表明:隔壁塔萃取分离模拟工艺最佳优化条件中萃取塔T 1~T 4的理论塔板数依次为26,26,41,15块,进料塔板依次为第7,15,40,16块,回流比依次为2.5,1.3,2.7,2.0,T 2和T 3萃取剂进料位置均为第5块;2种工艺分离出的叔丁醇、乙醇、水的质量分数均超过95.00%,且隔壁塔萃取分离工艺比常规萃取分离工艺节能约65.03%。  相似文献   

11.
张波 《天然气化工》2002,27(3):34-36,42
对醋酸乙烯精馏塔 3D5 94 / 5 95工况存在的问题进行了考察 ,结果发现 ,该塔进料状态与塔径不相配 ,提馏段液相负荷过大 ,近液泛状态操作 ,返混严重。精馏段上升气流较小 ,回流比接近最小回流比 ,导致在进料板附近形成恒浓区。在该区域内醋酸乙烯停留时间延长 ,聚合物生成加快使筛孔堵塞加重。通过增加进料加热器 ,相应改变了灵敏板的位置及控制温度 ,从而延长了该塔的运行周期 ,并为今后此塔的改扩建提供了参考。  相似文献   

12.
复合斜孔塔板在醋酸乙烯生产中的应用   总被引:1,自引:0,他引:1  
采用复合斜孔塔板对醋酸乙烯精馏塔进行了技术改造。采用计算机模拟进料热状况对醋酸乙烯精馏系统的影响以及不同回流比下塔板数、能耗、冷却负荷等,通过改变进料热状况消除塔内恒浓区,优选出最佳精馏方案即进料汽化率20%、回流比R=2、理论板数为63;并应用复合斜孔塔板代替筛板塔板,改造后生产能力提高一倍,节能20%,产品质量稳定,醋酸乙烯精馏塔运行周期从1年延长至3~4年。  相似文献   

13.
以苯酚为萃取剂,采用萃取精馏对甲基环己烷(MCH)-甲苯(MB)物系进行分离,比较了常规萃取精馏工艺流程和差压热耦合萃取精馏工艺流程;采用Aspen Plus化工流程模拟软件对萃取精馏工艺分离MCH-MB物系进行了模拟计算,考察了差压热耦合萃取精馏工艺中萃取剂进料位置、原料进料位置、萃取剂与原料的摩尔比(溶剂比)、回流比和压缩比等参数对MCH产品纯度及工艺能耗的影响。模拟得到差压热耦合萃取精馏塔优化的操作参数:萃取剂进料位置为第6块理论板,原料进料位置为第4块理论板,溶剂比为2.95,回流比为6,压缩比为12。模拟结果表明,差压热耦合萃取精馏工艺节能效果显著,比常规萃取精馏工艺可节能74.97%,得到MCH产品的含量可达99.54%(x)。  相似文献   

14.
基于丙酸甲酯-甲醇二元体系的压力敏感特性,以最小年总费用(TAC)作为经济评价指标,对变压精馏分离工艺进行了模拟与优化,并在常规工艺基础上进行了改造,以实现节能的目的。结果表明:常规分离工艺高压进料时,高压塔塔板数为41、回流比为1.5和进料位置为第33块板以及低压塔塔板数为39、回流比为2.0和进料位置为第17块板时TAC最低,为593.00万元/年。将热集成技术应用于常规工艺中,优化后的分离工艺均能实现物系的高效分离。相比于常规变压精馏,部分热集成变压精馏与全热集成变压精馏分别可以节约44.57%与41.94%的能耗,同时可以节约23.84%与32.59%的TAC,主要原因是热量集成使得蒸汽费用与换热器费用降低。优化后的两种工艺分离效果显著,且能耗与TAC均较低,可为工业设计提供理论参考。  相似文献   

15.
加盐萃取精馏制取无水乙醇过程的模拟   总被引:8,自引:3,他引:5  
利用PROⅡ流程模拟软件,在101.3kPa下,对以乙二醇-醋酸钾为复合萃取剂(醋酸钾的质量浓度为0.2g/mL)的质量分数95%的乙醇水溶液加盐萃取精馏制取无水乙醇的过程进行模拟计算,并进行了实验验证。考察了萃取剂进料位置、原料进料位置、溶剂比(萃取剂与进料的质量比)、回流比等对塔顶乙醇含量的影响。模拟结果表明,随回流比、溶剂比的增大,塔顶乙醇含量增加;随萃取剂进料位置降低或原料进料位置的升高,塔顶乙醇的含量降低;萃取段所需理论板数不少于9块。最佳的回流比为1.0、溶剂比为1.0,在此条件下,塔顶乙醇的质量分数可达99.9%。模拟值与实验值吻合良好。  相似文献   

16.
间歇真空精馏过程的简捷设计   总被引:3,自引:0,他引:3  
对间歇真空精馏过程的近似处理,将一个间歇真空精馏过程看作是一个改变进料组成的拟稳态连续过程,从而用于连续过程设计的Fenske-Underwood-Gililand方程被应用到间歇真空精馏过程的设计计算。该简捷设计法对组份较多且未知的复杂体系的间歇真空精馏过程的初步设计是适宜的。  相似文献   

17.
提出了采用隔离壁塔分离丙烯-丙烷的新工艺。采用Aspen Plus软件中的MultiFrac模型对其进行了模拟计算。在主塔理论板数55;副塔理论板数11的情况下,利用灵敏度分析模块分析了乙腈含水量、溶剂比、回流比、分配比对分离效果的影响。结果表明,隔离壁萃取精馏塔的适宜工艺条件为:乙腈中含水质量百分数14%;溶剂比5.2;主塔回流比8;分配比4∶1。与常规精馏和常规萃取精馏工艺进行了对比,完成相同的分离任务,该新工艺比常规精馏和常规萃取精馏工艺分别节能39%、20%。  相似文献   

18.
采用分隔壁萃取精馏塔,研究了一塔式分离苯-环己烷体系。选用环丁砜作为萃取剂,通过加入助溶剂邻二甲苯获得合适的塔釜温度,有效防止环丁砜受热分解。考察了萃取剂/进料质量比、两侧回流比、萃取剂进料温度、助溶剂含量等因素对该分离装置分离效果的影响。结果表明,在主塔回流比为1、苯精馏侧回流比为2.5、萃取剂/进料质量比为6.8、溶剂进料温度为75℃时,环己烷产品中环己烷质量分数为97.15%、苯产品中苯质量分数为96.23%。获得的分隔壁萃取精馏塔的相关参数为进一步改进装置提供了依据。由于采用一塔式分离苯-环己烷,降低了设备投资;与常规萃取精馏相比,节能13.4%。  相似文献   

19.
高纯异丁烷生产工艺原料中碳三切割方案的选择   总被引:1,自引:0,他引:1  
对由液化气制高纯异丁烷的工艺原料中C3含量对工艺流程的影响进行分析,并用ASPEN软件对C3切割塔进行了模拟优化以确定进料位置和回流比。结果表明:原料中C3含量对装置能耗及加氢系统压力与反应性能均有影响;后切割C3工艺适合C3含量较低的原料,前段切割C3工艺适合C3含量较高的原料,选择的节点在C3质量分数20%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号